| 研究生: |
游騰惟 Yu, Teng-Wei |
|---|---|
| 論文名稱: |
空間化都市碳核算框架之建構及空間分析-以南科臺南園區暨周邊地區為例 Constructing the Spatial Planning Urban Carbon Accounting Framework and Spatial Analysis – the Case of the “Tainan Science Park” with Surrounding Areas |
| 指導教授: |
李俊霖
Lee, Chun-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 都市計畫 、都市代謝 、空間化都市碳核算 、淨零轉型 |
| 外文關鍵詞: | Urban Planning, Urban Metabolism, Spatial Urban Carbon Accounting, Net-Zero Transition |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷日漸嚴峻、淨零轉型刻不容緩的如今,都市化地區不只是主要的溫室氣體排放源,更是具備成為扭轉氣候變遷趨勢的關鍵潛力角色。都市環境的碳排放來自建成區域人口集中、經濟增長來的持續需求,使都市不斷擴張、周邊土地因成長壓力轉為建成環境,降低都市周邊環境的碳吸存能力。
碳核算作為碳通量的量化工具,在產、官、學各界中皆已發展出成熟的國際規範及查驗機制。然而,現有碳核算方法在都市環境的應用面臨技術與制度的缺口:傳統碳核算方式包含碳盤查及碳足跡,碳盤查規範如IPCC指引、GPC等以行政轄界為主體、以部門為核算單元,難以考量空間區位差異因地制宜設定淨零政策目標、無法提供具備空間資訊之結果,而碳足跡方法以商品或服務為計算主體、資料要求較碳盤查更加細緻,難以在都市尺度大規模應用,此為技術面限制;諸多文獻已強調空間規劃對實現淨零轉型至關重要,然而我國空間規劃、氣候治理及溫室氣體管理等三體系各自獨立、缺乏互動機制,形成綠色衝突、資訊斷鏈,此為制度面限制。同時,人工智慧與半導體等高耗能科技產業大舉擴廠、政府面臨能源轉型的政策壓力,又逢國土計畫施行將近,我國的國土空間發展正邁入嶄新紀元。
面對以上挑戰,本研究基於「回歸土地做為核算主體」之理念,引入都市代謝及生命週期思維作為時空維度之補充,建構適用於都市環境的空間化碳核算框架 SPUCAF,透過框架建構論述、法治探討與實證分析,試圖由本研究彌合上述缺口:在框架中以部門劃分重構、藉空間範疇標記篩選應核算通量、經空間分派及通量歸責機制將使通量空間明確化、依單年與跨年模組完成核算;在實證分析中以南部科學園區臺南園區及周邊都市計畫區為例,比較碳通量的數據規模與變化狀態確認框架應用性,觀察科學園區與市鎮型計畫區的碳通量差異,並進一步以街廓面積規模、樓地板開發強度等規劃參數,初探空間規劃對碳通量的影響關係。
本研究發現,碳通量空間化,框架之設計得以有效處理通量空間化、在街廓尺度整合不同尺度數據,通量空間化後可降低釋讀理解難度、搭配空間分析指認轉型區位,而科學園區與市鎮型計畫區依不同使用呈現出碳排放特徵差異,規劃參數對碳排放的影響則體現在使用別、街廓及建物型態等層面。建議後續研究應跟隨智慧城市、數位孿生概念或系統動態模擬、加入空間明確性活動數據與規劃方案情境評估,以提升框架實用價值;規劃工具及溫管、氣變法制之間應建立資訊傳遞機制,並以空間規劃體系作為協調介面、上位引導淨零策略推動區位,發揮空間規劃在淨零轉型的重要權能;框架應朝向標準化流程、工具化導向發展,以降低使用門檻及核算成本、成為規劃研擬與審議之決策支援,為空間規劃領域邁向淨零目標提供科學的量化基石。
As urbanization accelerates climate change, cities have become pivotal for the net-zero transition. However, existing carbon accounting or inventory standards mainly focus on administrative boundaries, lacking the spatial granularity required for effective urban planning. In Taiwan, this technical gap is exacerbated by an institutional disconnect between climate governance and spatial planning, particularly amidst the expansion of energy-intensive semiconductor industries and the implementation of the National Spatial Planning Act. To bridge these gaps, this study adopts Urban Metabolism theory to construct the Spatial Planning Urban Carbon Accounting Framework (SPUCAF). By returning to land as the primary accounting unit, SPUCAF employs Sector Redivision, Spatial Scope Delineation, Flux Spatial Allocation, and Flux Spatial Attribution to achieve spatially explicit accounting at the street-block level.
An empirical analysis of the Southern Taiwan Science Park and surrounding townships validates the framework. The analysis confirms that spatial planning factors, specifically block size and building form, significantly influence carbon intensity.
The results demonstrate that SPUCAF can effectively manage carbon flux spatialization, integrating multi-scale data at the block level. The empirical accounting and analysis reveal that science parks and town plan areas exhibit distinct emission characteristics based on land use and plan nature.
In conclusion, this study suggests that future research should align with Smart City and Digital Twin concepts or system dynamics, incorporating spatially explicit activity data and scenario assessments to enhance practical value. An information transfer mechanism must be established between planning tools and climate regulations, utilizing the spatial planning system as a coordination interface to guide net-zero strategies. Ultimately, the framework should evolve toward standardization and instrumentalization to lower usage barriers and accounting costs. By functioning as a decision-support tool for plan formulation and review, SPUCAF provides a scientific, quantitative foundation for the spatial planning field to achieve net-zero goals.
英文文獻
1. Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539-42559. doi:10.1007/s11356-022-19718-6
2. Abu Dabous, S., Shanableh, A., Al-Ruzouq, R., Hosny, F., & Khalil, M. A. (2022). A spatio-temporal framework for sustainable planning of buildings based on carbon emissions at the city scale. Sustainable Cities and Society, 82, 103890. doi:10.1016/j.scs.2022.103890
3. Araza, A., de Bruin, S., Hein, L., & Herold, M. (2023). Spatial predictions and uncertainties of forest carbon fluxes for carbon accounting. Scientific Reports, 13(1), 12704. doi:10.1038/s41598-023-38935-8
4. Arioli, M. S., D’Agosto, M. de A., Amaral, F. G., & Cybis, H. B. B. (2020). The evolution of city-scale GHG emissions inventory methods: A systematic review. Environmental Impact Assessment Review, 80, 106316. doi:10.1016/j.eiar.2019.106316
5. Baccini, P. (1996). Understanding regional metabolism for a sustainable development of urban systems. Environmental Science and Pollution Research, 3(2), 108-111. doi:10.1007/BF02985503
6. Brown, W., & MacAskill, K. (2025). Accounting and management of city carbon emissions: Trajectories towards advanced data use. Sustainable Cities and Society, 131, 106677. doi:10.1016/j.scs.2025.106677
7. Cai, M., Shi, Y., Ren, C., Yoshida, T., Yamagata, Y., Ding, C., et al. (2021). The need for urban form data in spatial modeling of urban carbon emissions in China: A critical review. Journal of Cleaner Production, 319, 128792. doi:10.1016/j.jclepro.2021.128792
8. Cai, Q., Zeng, N., Zhao, F., Han, P., Liu, D., Lin, X., et al. (2022). The impact of human and livestock respiration on CO2 emissions from 14 global cities. Carbon Balance and Management, 17(1), 17. doi:10.1186/s13021-022-00217-7
9. Centre for Sustainable Energy & Town and Country Planning Association. (2023). Spatial planning for climate resilience and Net Zero. Centre for Sustainable Energy. Retrieved from https://www.theccc.org.uk/publication/spatial-planning-for-climate-resilience-and-net-zero-cse-tcpa/
10. Chen, K., Yang, M., Zhou, X., Liu, Z., Li, P., Tang, J., et al. (2022). Recent advances in carbon footprint studies of urban ecosystems: overview, application, and future challenges. Environmental Reviews, 30(2), 342-356. doi:10.1139/er-2021-0111
11. Christen, A., Coops, N. C., Kellett, R., Crawford, B., Heyman, E., Olchovski, I., et al. (2010). A LiDAR-based urban metabolism approach to neighbourhood scale energy and carbon emissions modelling. doi:10.14288/1.0103595
12. Chuai, X., Huang, X., Lai, L., Wang, W., Peng, J., & Zhao, R. (2013). Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environmental Science & Policy, 25, 50-61. doi:10.1016/j.envsci.2012.05.005
13. Chuai, X., Huang, X., Wang, W., Wen, J., Chen, Q., & Peng, J. (2012). Spatial econometric analysis of carbon emissions from energy consumption in China. Journal of Geographical Sciences, 22(4), 630-642. doi:10.1007/s11442-012-0952-z
14. Churkina, G. (2016). The Role of Urbanization in the Global Carbon Cycle. Frontiers in Ecology and Evolution, 3. doi:10.3389/fevo.2015.00144
15. Churkina, G., Organschi, A., Reyer, C. P. O., Ruff, A., Vinke, K., Liu, Z., et al. (2020). Buildings as a global carbon sink. Nature Sustainability, 3(4), 269-276. doi:10.1038/s41893-019-0462-4
16. Codoban, N., & Kennedy, C. A. (2008). Metabolism of Neighborhoods. Journal of Urban Planning and Development, 134(1), 21-31. doi:10.1061/(ASCE)0733-9488(2008)134:1(21)
17. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. (2013). Technical Summary. In Climate Change 2013: The Physical Science Basis. Cambridge, United Kingdom and New York, NY, USA.: Cambridge University Press. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_TS_FINAL.pdf
18. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 151). Geneva, Switzerland: Intergovernmental Panel on Climate Change (IPCC). Retrieved from http://ipcc.ch/report/ar5/syr/
19. Contribution of Working Groups I, II and III to the Sixth & Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. (2023). Climate Change 2023: Synthesis Report. Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (First.). Geneva, Switzerland: Intergovernmental Panel on Climate Change (IPCC). doi:10.59327/IPCC/AR6-9789291691647
20. Cui, Y., Li, L., Chen, L., Zhang, Y., Cheng, L., Zhou, X., et al. (2018). Land-Use Carbon Emissions Estimation for the Yangtze River Delta Urban Agglomeration Using 1994–2016 Landsat Image Data. Remote Sensing, 10(9), 1334. doi:10.3390/rs10091334
21. D’Agostino, D., & Mazzarella, L. (2019). What is a Nearly zero energy building? Overview, implementation and comparison of definitions. Journal of Building Engineering, 21, 200-212. doi:10.1016/j.jobe.2018.10.019
22. Dong, Q., Huang, Z., Zhou, X., Guo, Y., Scheuer, B., & Liu, Y. (2023). How building and street morphology affect CO2 emissions: Evidence from a spatially varying relationship analysis in Beijing. Building and Environment, 236, 110258. doi:10.1016/j.buildenv.2023.110258
23. Du, S., Zhang, Y., Sun, W., & Liu, B. (2024). Quantifying heterogeneous impacts of 2D/3D built environment on carbon emissions across urban functional zones: A case study in Beijing, China. Energy and Buildings, 319, 114513. doi:10.1016/j.enbuild.2024.114513
24. Erickson, P., & Morgenstern, T. (2016). Fixing greenhouse gas accounting at the city scale. Carbon Management, 7(5-6), 313-316. doi:10.1080/17583004.2016.1238743
25. Fang, G., Gao, Z., Tian, L., & Fu, M. (2022). What drives urban carbon emission efficiency? – Spatial analysis based on nighttime light data. Applied Energy, 312, 118772. doi:10.1016/j.apenergy.2022.118772
26. Fu, B., Wu, M., Che, Y., & Yang, K. (2017). Effects of land-use changes on city-level net carbon emissions based on a coupled model-Web of Science Core Collection. Carbon Management, 8(3), 245-262. doi:10.1080/17583004.2017.1314704
27. Han, T., Xie, C., Yang, Y., Zhang, Y., Huang, Y., Liu, Y., et al. (2024). Spatial mapping of greenhouse gases using a UAV monitoring platform over a megacity in China. Science of The Total Environment, 951, 175428. doi:10.1016/j.scitotenv.2024.175428
28. Hao, Y., Su, M., Zhang, L., Cai, Y., & Yang, Z. (2015). Integrated accounting of urban carbon cycle in Guangyuan, a mountainous city of China: the impacts of earthquake and reconstruction. Journal of Cleaner Production, 103, 231-240. doi:10.1016/j.jclepro.2014.05.091
29. He, Q., Wu, X., & Ding, X. (2025). Uncertainty in the Carbon Footprint accounting and evaluation of textile and apparel products: A systematic review. Journal of Cleaner Production, 492, 144885. doi:10.1016/j.jclepro.2025.144885
30. Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, M. C., et al. (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9(12), 5125-5142. doi:10.5194/bg-9-5125-2012
31. Huang, S. L., & Chen, C. W. (2009). Urbanization and Socioeconomic Metabolism in Taipei. Journal of Industrial Ecology, 13(1), 75-93. doi:10.1111/j.1530-9290.2008.00103.x
32. Huang, S. L., & Lee, C. L. (2010). Urban Metabolism Analysis. In The Routledge handbook of urban ecology (1st edition., pp. 521-527). London New York: Routledge. Retrieved from https://www.taylorfrancis.com/chapters/edit/10.4324/9780203839263-57/urban-metabolism-analysis-shu-li-huang-chun-lin-lee
33. Huang, S. L., Lee, C. L., Xu, S., Cui, S., & Bai, X. (2020). Urban metabolism analysis. In I. Douglas, P. M. L. Anderson, D. Goode, M. C. Houck, D. Maddox, H. Nagendra, & T. P. Yok (Eds.), The Routledge Handbook of Urban Ecology (2nd ed., pp. 497-511). Other titles: Handbook of urban ecology Description: Second Edition. | New York: Routledge, 2020.: Routledge. doi:10.4324/9780429506758-43
34. Huang, Y., Wang, F., Zhang, L., Zhao, J., Zheng, H., Zhang, F., et al. (2023). Changes and net ecosystem productivity of terrestrial ecosystems and their influencing factors in China from 2000 to 2019. Frontiers in Plant Science, 14. doi:10.3389/fpls.2023.1120064
35. Huovila, A., Siikavirta, H., Antuña Rozado, C., Rökman, J., Tuominen, P., Paiho, S., et al. (2022). Carbon-neutral cities: Critical review of theory and practice. Journal of Cleaner Production, 341, 130912. doi:10.1016/j.jclepro.2022.130912
36. Ibrahim, N., Sugar, L., Hoornweg, D., & Kennedy, C. (2012). Greenhouse gas emissions from cities: comparison of international inventory frameworks. Local Environment, 17(2), 223-241. doi:10.1080/13549839.2012.660909
37. Intergovernmental Panel On Climate Change (Ipcc) (Ed.). (2023). Summary for Policymakers. In Climate Change 2022 - Mitigation of Climate Change (1st ed., pp. 3-48). Cambridge University Press. doi:10.1017/9781009157926.001
38. ISO. (2018a, August). ISO 14067:2018 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification. Retrieved from https://www.iso.org/standard/71206.html
39. ISO. (2018b, December). ISO 14064-1:2018 Greenhouse gases — Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. Retrieved from https://www.iso.org/standard/66453.html
40. Kellett, R., Christen, A., Coops, N. C., van der Laan, M., Crawford, B., Tooke, T. R., et al. (2013). A systems approach to carbon cycling and emissions modeling at an urban neighborhood scale. Landscape and Urban Planning, 110, 48-58. doi:10.1016/j.landurbplan.2012.10.002
41. Kennedy, C., Pincetl, S., & Bunje, P. (2011). The study of urban metabolism and its applications to urban planning and design. Environmental Pollution, 159(8), 1965-1973. doi:10.1016/j.envpol.2010.10.022
42. Kennedy, Christopher, Cuddihy, J., & Engel-Yan, J. (2007). The Changing Metabolism of Cities. Journal of Industrial Ecology, 11(2), 43-59. doi:10.1162/jie.2007.1107
43. Li, X., Liu, Z., Li, S., Li, Y., & Wang, W. (2023). Urban Land Carbon Emission and Carbon Emission Intensity Prediction Based on Patch-Generating Land Use Simulation Model and Grid with Multiple Scenarios in Tianjin. Land, 12(12), 2160. doi:10.3390/land12122160
44. Li, Y., Lin, Y., & Gong, Y. (2015). A GIS-based approach to urban community-scale carbon emissions modeling. In S. Feng, W. Huang, J. Wang, M. Wang, & J. Zha (Eds.), Low-carbon city and new-type urbanization (pp. 329–336). Springer.
45. Lin, T. P., Lin, F. Y., Wu, P. R., Hämmerle, M., Höfle, B., Bechtold, S., et al. (2017). Multiscale analysis and reduction measures of urban carbon dioxide budget based on building energy consumption. Energy and Buildings, 153, 356-367. doi:10.1016/j.enbuild.2017.07.084
46. Liu, Q., Song, J., Dai, T., Shi, A., Xu, J., & Wang, E. (2022). Spatio-temporal dynamic evolution of carbon emission intensity and the effectiveness of carbon emission reduction at county level based on nighttime light data. Journal of Cleaner Production, 362, 132301. doi:10.1016/j.jclepro.2022.132301
47. Liu, Zhu, Sun, T., Yu, Y., Ke, P., Deng, Z., Lu, C., et al. (2022). Near-Real-Time Carbon Emission Accounting Technology Toward Carbon Neutrality. Engineering, 14, 44-51. doi:10.1016/j.eng.2021.12.019
48. Liu, Ziyan, Han, L., & Liu, M. (2024). High-resolution carbon emission mapping and spatial-temporal analysis based on multi-source geographic data: A case study in Xi’an City, China. Environmental Pollution, 361, 124879. doi:10.1016/j.envpol.2024.124879
49. Lombardi, M., Laiola, E., Tricase, C., & Rana, R. (2017). Assessing the urban carbon footprint: An overview. Environmental Impact Assessment Review, 66, 43-52. doi:10.1016/j.eiar.2017.06.005
50. Long, Y., Sharifi, A., Huang, L., & Chen, J. (2022). Urban carbon accounting: An overview. Urban Climate, 44, 101195. doi:10.1016/j.uclim.2022.101195
51. Martire, S., Mirabella, N., & Sala, S. (2018). Widening the perspective in greenhouse gas emissions accounting: The way forward for supporting climate and energy policies at municipal level. Journal of Cleaner Production, 176, 842-851. doi:10.1016/j.jclepro.2017.12.055
52. Mirabella, N., & Allacker, K. (2021). Urban GHG accounting: discrepancies, constraints and opportunities. Buildings and Cities, 2(1), 21-35. doi:10.5334/bc.50
53. Newman, P. W. G. (1999). Sustainability and cities: extending the metabolism model. Landscape and Urban Planning, 44(4), 219-226. doi:10.1016/S0169-2046(99)00009-2
54. Niza, S., Rosado, L., & Ferrão, P. (2009). Urban Metabolism: Methodological Advances in Urban Material Flow Accounting Based on the Lisbon Case Study. Journal of Industrial Ecology, 13(3), 384-405. doi:10.1111/j.1530-9290.2009.00130.x
55. Pan, Y., Pan, Y., Yang, Y., & Liu, H. (2017). A Parametric Study on the Community Form and Its Influences on Energy Consumption of Office Buildings in Shanghai. Procedia Engineering, 205, 548-555. doi:10.1016/j.proeng.2017.10.418
56. Paoli, F., & Pirlone, F. (2024). Closing the City Cycle: An Approach for Defining Cross-Sectoral Circular Actions to Be Included in a Circular Urban Plan. Sustainability, 16(17), 7747. doi:10.3390/su16177747
57. Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., et al. (2001). Urban Ecological Systems: Linking Terrestrial Ecological, Physical, and Socioeconomic Components of Metropolitan Areas1. Annual Review of Ecology, Evolution, and Systematics, 32(Volume 32, 2001), 127-157. doi:10.1146/annurev.ecolsys.32.081501.114012
58. Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R., & Kumar, E. (2016). Meta-principles for developing smart, sustainable, and healthy cities. Science, 352(6288), 940-943. doi:10.1126/science.aaf7160
59. Ramaswami, A., Tong, K., Canadell, J. G., Jackson, R. B., Stokes, E. (Kellie), Dhakal, S., et al. (2021). Carbon analytics for net-zero emissions sustainable cities. Nature Sustainability, 4(6), 460-463. doi:10.1038/s41893-021-00715-5
60. Sato, C., Dionisio, R., Xu, F., & Kato, H. (2025). Decarbonising Cities in Japan and New Zealand: A Comparative Study of Urban Policy Developments (pp. 987-1002). Presented at the 2025 International Conference of Asia-Pacific Planning Societies, Hsinchu, Taiwan.
61. Seto, K. C., Churkina, G., Hsu, A., Keller, M., Newman, P. W. G., Qin, B., et al. (2021). From Low- to Net-Zero Carbon Cities: The Next Global Agenda. Annual Review of Environment and Resources, 46(1), 377-415. doi:10.1146/annurev-environ-050120-113117
62. Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083-16088. doi:10.1073/pnas.1211658109
63. Shahani, F., Pineda-Pinto, M., & Frantzeskaki, N. (2022). Transformative low-carbon urban innovations: Operationalizing transformative capacity for urban planning. Ambio, 51(5), 1179-1198. doi:10.1007/s13280-021-01653-4
64. Stagakis, S., Feigenwinter, C., Vogt, R., Brunner, D., & Kalberer, M. (2023a). A high-resolution monitoring approach of urban CO2 fluxes. Part 2 – surface flux optimisation using eddy covariance observations. Science of The Total Environment, 903, 166035. doi:10.1016/j.scitotenv.2023.166035
65. Stagakis, S., Feigenwinter, C., Vogt, R., & Kalberer, M. (2023b). A high-resolution monitoring approach of urban CO2 fluxes. Part 1 - bottom-up model development. Science of The Total Environment, 858, 160216. doi:10.1016/j.scitotenv.2022.160216
66. Tizot, J. Y. (2018). Ebenezer Howard’s Garden City Idea and the Ideology of Industrialism. Cahiers Victoriens et Édouardiens, (87 Printemps). doi:10.4000/cve.3605
67. Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234-240. doi:10.2307/143141
68. Torabi, S., Mutani, G., & Lombardi, P. (2016). GIS-Based Energy Consumption Model at the Urban Scale for the Building Stock.
69. Wang, Gengzhe, Han, Q., & de Vries, B. (2020). A geographic carbon emission estimating framework on the city scale. Journal of Cleaner Production, 244, 118793. doi:10.1016/j.jclepro.2019.118793
70. Wang, Guofeng, Deng, X., Wang, J., Zhang, F., & Liang, S. (2019). Carbon emission efficiency in China: A spatial panel data analysis. China Economic Review, 56, 101313. doi:10.1016/j.chieco.2019.101313
71. Wang, J., Liu, W., Sha, C., Zhang, W., Liu, Z., Wang, Z., et al. (2023). Evaluation of the impact of urban morphology on commercial building carbon emissions at the block scale – A study of commercial buildings in Beijing. Journal of Cleaner Production, 408, 137191. doi:10.1016/j.jclepro.2023.137191
72. Wang, S., Shi, C., Fang, C., & Feng, K. (2019). Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model. Applied Energy, 235, 95-105. doi:10.1016/j.apenergy.2018.10.083
73. Wang, X., Li, Y., Liu, N., & Zhang, Y. (2020). An urban material flow analysis framework and measurement method from the perspective of urban metabolism. Journal of Cleaner Production, 257, 120564. doi:10.1016/j.jclepro.2020.120564
74. Wang, Y., & Jin, X. (2025). Land Use, Spatial Planning, and Their Influence on Carbon Emissions: A Comprehensive Review. Land, 14(7), 1406. doi:10.3390/land14071406
75. Wang, Z., Zhang, J., Luo, P., Sun, D., & Li, J. (2023). Revealing the spatio-temporal characteristics and impact mechanism of carbon emission in China’s urban agglomerations. Urban Climate, 52, 101733. doi:10.1016/j.uclim.2023.101733
76. WBSCD & WRI. (2004). The Greenhouse Gas Protocol. World Resources Institute. Retrieved from https://ghgprotocol.org/sites/default/files/standards/ghg_project_accounting.pdf
77. Wei, B., Kasimu, A., Reheman, R., Zhang, X., Zhao, Y., Aizizi, Y., et al. (2023). Spatiotemporal characteristics and prediction of carbon emissions/absorption from land use change in the urban agglomeration on the northern slope of the Tianshan Mountains. Ecological Indicators, 151, 110329. doi:10.1016/j.ecolind.2023.110329
78. Wolman, A. (1965). The Metabolism of Cities. Scientific American, 213(3), 178-190. doi:10.1038/scientificamerican0965-178
79. Yan, Z., Xia, L., & Xiang, W. (2014). Analyzing spatial patterns of urban carbon metabolism: A case study in Beijing, China. Landscape and Urban Planning, 130, 184-200. doi:10.1016/j.landurbplan.2014.05.006
80. Yang, Y., & Takase, T. (2024). Spatial characteristics of carbon dioxide emission intensity of urban road traffic and driving factors: Road network and land use. Sustainable Cities and Society, 113, 105700. doi:10.1016/j.scs.2024.105700
81. Yu, L. T., Chang, C., & Lin, T. P. (2025). Estimating and classifying urban carbon budget based on land use intensity with regulatory strategies developing. Sustainable Cities and Society, 133, 106854. doi:10.1016/j.scs.2025.106854
82. Yu, T. W., & Lee, C. L. (2025). Establishing the “Spatial Planning Urban Carbon Accounting Framework”: Bringing Spatial Heterogeneity into Urban Carbon Fluxes. Presented at the 2025 International Conference if Asia-Pacific Planning Societies, Hsinchu, Taiwan.
83. Zhang, H., Peng, J., Wang, R., Zhang, J., & Yu, D. (2021). Spatial planning factors that influence CO2 emissions: A systematic literature review. Urban Climate, 36, 100809. doi:10.1016/j.uclim.2021.100809
84. Zhang, N., Luo, Z., Liu, Y., Feng, W., Zhou, N., & Yang, L. (2022). Towards low-carbon cities through building-stock-level carbon emission analysis: a calculating and mapping method. Sustainable Cities and Society, 78, 103633. doi:10.1016/j.scs.2021.103633
85. Zhang, Y. (2013). Urban metabolism: A review of research methodologies. Environmental Pollution, 178, 463-473. doi:10.1016/j.envpol.2013.03.052
86. Zhang, Y., Wu, Q., & Fath, B. D. (2018). Review of spatial analysis of urban carbon metabolism. Ecological Modelling, 371, 18-24. doi:10.1016/j.ecolmodel.2018.01.005
87. Zhao, C., Yan, Y., Wang, C., Tang, M., Wu, G., Ding, D., et al. (2018). Adaptation and mitigation for combating climate change – from single to joint. Ecosystem Health and Sustainability, 4(4), 85-94. doi:10.1080/20964129.2018.1466632
88. Zhao, R., Huang, X., Xue, J., & Guan, X. (2023). A practical simulation of carbon sink calculation for urban buildings: A case study of Zhengzhou in China. Sustainable Cities and Society, 99, 104980. doi:10.1016/j.scs.2023.104980
89. Zheng, Y., Du, S., Zhang, X., Bai, L., & Wang, H. (2022). Estimating carbon emissions in urban functional zones using multi-source data: A case study in Beijing. Building and Environment, 212, 108804. doi:10.1016/j.buildenv.2022.108804
90. Zhou, Y., Chen, M., Tang, Z., & Mei, Z. (2021). Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustainable Cities and Society, 66, 102701. doi:10.1016/j.scs.2020.102701
中文文獻
1. Berke, P., Godschalk, D., Kaiser, E., & Rodriguez, D. (2009). 都市土地使用規劃。薩支平(譯),五南。
2. 內政部國土管理署(2024年5月)。國土計畫土地使用管制常見 QA。檢自:https://www.nlma.gov.tw/filesys/file/EMMA/c1130529-1.pdf
3. 行政院環境保護署(2022年5月)。溫室氣體排放量盤查作業指引。檢自:https://ghgregistry.moenv.gov.tw/upload/Tools/溫室氣體排放量盤查作業指引(2022.05)-final.pdf
4. 吳育誠(2024)。以遠距耦合觀點探討淨零排放政策對土地使用變遷之影響:以七股地區為例。國立臺北大學都市計劃研究所,新北市。檢自:https://hdl.handle.net/11296/784axr
5. 李俊霖、李盈潔、黃書禮(2024)。生態土地使用規劃:全球環境變遷與在地永續實踐。詹氏。
6. 柯伯煦、賴宗裕(2013)。政府的工業區治理與制度分析。物業管理學報,4(1),65–71。
7. 洪嘉宏、謝正昌、劉培東、王東永、黃明塏、李賢基等(2012)。都市計畫規劃作業手冊。內政部營建署城鄉發展分署。
8. 胡誠、張俊清(2024)。城市尺度溫室氣體排放反演研究進展及發展趨勢。中國環境科學,44(12),7036–7045。
9. 高原、劉耕源、謝濤、趙勇、陳操操、孟凡鑫等(2023)。碳責任帳戶的目標原則、分配邏輯與框架構建:文獻綜述。中國環境管理,15(1),7–8。
10. 國家發展委員會、行政院環境保護署、經濟部、科技部、交通部、內政部、等(2022年3月30日)。臺灣2050淨零路徑。
11. 郭鴻儀(2022年4月22日)。「淨零碳排路徑及策略」的缺席者:台灣國土整體計畫。聯合報鳴人堂。
12. 陳玟吟(2024)。疫後產業園區的發展課題與轉變。臺灣經濟研究月刊,47(5),75–83。doi:10.29656/TERM.202405_47(5).0010
13. 陳秉立(2021年5月1日)。日本國土空間計劃制度之發展脈絡與特色。建築師,2021年5月號(557),78–83。
14. 綠色公民行動聯盟(2023年7月13日)。搶救光電信任度,暫緩綠能發展區。綠色公民行動聯盟。檢自:https://gcaa.org.tw/8316/
15. 鄭安廷、王筱雯(2023年1月18日)。再生能源與國土計畫(上):化解「綠色衝突」的整體框架。
16. 鄭安廷、蔡沛庭(2024)。產業用地發展之政策趨勢與變革。臺灣經濟研究月刊,47(5),99–106。doi:10.29656/TERM.202405_47(5).0013
17. 賴品瑀(2025年2月6日)。準備氣候變遷調適行動,地方政府面對的困境是什麼?。獨立評論@天下。上網日期:2025年2月14日,檢自:https://opinion.cw.com.tw/blog/profile/52/article/15810
18. 謝亞丞(2017)。臺北都會區都市周邊地區土地使用變遷驅動力對都市遠距連接的影響。國立臺北大學都市計劃研究所,新北市。檢自:https://hdl.handle.net/11296/p47u97
19. 王珮琪(2005)。以二氧化碳減量觀點探討都市計畫綠化管制策略。國立臺北科技大學建築與都市設計研究所,臺北市。檢自:https://hdl.handle.net/11296/x46rs6
20. 林美君(2011)。多層多類分區密度之空間人口重分布模式。國立臺灣大學生物環境系統工程學研究所,臺北市。檢自:https://hdl.handle.net/11296/ad9c4g
21. 張又升(2002)。建築物生命週期二氧化碳減量評估。國立成功大學建築學系博士班,臺南市。檢自:https://hdl.handle.net/11296/zwv5mh
22. 郭亞琳(2016)。以碳排放出發探討綠建築容積獎勵綠化效益之研究- 以臺北市為例。華夏科技大學資產與物業管理研究所,新北市。檢自:https://hdl.handle.net/11296/5q7ds9
23. 游騰惟、李俊霖(2025)。建立空間化都市碳核算框架:都市計畫領域之觀點。發表於第29屆國土規劃論壇,臺南市。
日文文獻
1. 佐々木 正(2023)。カーボンニュートラルに着目した都市施策の再構築とその評価等に関する問題提起。檢自:https://www.jice.or.jp/cms/kokudo/pdf/reports/recital/2023/gj2023_04.pdf
2. 佐々木 正、牧野 浩志(2023年7月13日)。カーボンニュートラルに着目した都市施策の再構築とその評価等に関する問題提起。JICE Report。国土技術研究センター。
3. 佐藤 千江、加藤 博和(2022)。立地適正化計画における脱炭素化の考慮に関する実態。日本都市計画学会中部支部研究発表会論文集,33(0),29–32。doi:10.11361/cpijchubu.33.0_29
4. 国・地方脱炭素実現会議(2021)。地域脱炭素ロードマップ。檢自:https://www.cas.go.jp/jp/seisaku/datsutanso/pdf/20210609_chiiki_roadmap.pdf
5. 洞澤 秀雄(2023)。脱炭素における都市法の果たす役割: イギリス法との比較を通じて。南山法学,46(3・4),69–101。