| 研究生: |
林巧彣 Lin, Chiao-Wen |
|---|---|
| 論文名稱: |
具鎖相迴路控制之全橋LLC諧振式直流電源轉換器 Full-Bridge LLC DC-DC Resonant Converter with PLL Control Scheme |
| 指導教授: |
林瑞禮
Lin, Ray-Lee 李祖聖 Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | LLC諧振式轉換器 、鎖相迴路控制 、諧振式轉換器 、全橋 |
| 外文關鍵詞: | LLC resonant converter, phase-locked-loop, resonant converter, full-bridge |
| 相關次數: | 點閱:102 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一具鎖相迴路控制之全橋LLC諧振式直流電源轉換器,其係利用鎖相控制技術,使功率開關工作於零電壓切換狀態。
當輸入電壓、輸出電壓以及輸出功率相同時,相較於半橋LLC諧振式轉換器,全橋式電路除具低切換損失、高效率之優點,且適用於較大功率之應用。當其負載電流改變時,將造成諧振槽之諧振頻率點與電壓增益隨之變動。然而,傳統變頻控制方式,無法精確的調控功率開關之操作頻率,甚至使操作頻率低於諧振頻率點,導致功率開關失去零電壓切換之特性,增加切換損失,降低轉換器之效率。本論文所採用之鎖相迴路控制技術,係藉由鎖定LLC諧振槽之輸入電壓以及並聯諧振電感之電壓相位訊號。再依據此電壓相位關係,鎖定諧振槽之諧振頻率,作為最低操作頻率基準點,來調整操作頻率,以得到所需之輸出電壓,且使操作頻率高於諧振頻率,確保功率開關元件恆具有零電壓切換之特性。
此外,本論文將植基於諧振槽之功率因數、電壓増益以及電感比例三者之間的關係,提出LLC諧振槽元件之設計流程。藉由此設計方式可確保輸入電壓改變時,電源轉換器依然能維持較佳的效率。
最後,實做一輸入電壓300V~400V、輸出電壓48V、輸出電流12A之雛型電路,俾以驗證本論文所提出之鎖相控制迴路應用於全橋LLC諧振式直流電源轉換器之可行性
This thesis presents a full-bridge LLC DC-DC resonant converter with phase-locked-loop control (PLL) scheme, which is able to track the resonant frequency of the LLC resonant tank as the reference frequency point for the control of the frequency-modulation.
Since the resonant frequencies of the LLC resonant tank are dependent on the load conditions and component deviations, unlike conventional frequency-modulation control, PLL control is utilized to ensure that the operating frequency keeps in the zero-voltage-switching (ZVS) region for obtaining low switching loss. Furthermore, in order to fulfill in high-power applications, the full-bridge converter is required instead of half-bridge circuit in this thesis.
Moreover, in order to have high efficiency within wide input voltage range, high power factor for the LLC resonant tank should be ensured. The parameters of the LLC resonant tank are designed according to the voltage gain and input-power factor of the LLC resonant tank.
Finally, the prototype circuit of the full-bridge LLC resonant converter, with 48V output voltage at 12A output current, is built to verify the performance of this proposed full-bridge LLC DC-DC resonant converter with PLL control.
[1] M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converter. New York: Wiley, 1995.
[2] R. Farrington, M. M. Jovanovic, and F. C. Lee, “Design oriented analysis of reactive power in resonant converters,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 411-421, Oct. 1993.
[3] C. Hattrup, H. W. Broeck, and M. Ossmann, “Fast estimation techniques for digital control of resonant converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 174-182, Jan. 2003.
[4] D. Fu, F. C. Lee, Y. Liu, and M. Xu, “Novel multi-element resonant converters for front-end DC/DC converters,” in Proc. IEEE Power Electronic Spec. Conf., June 2008, pp. 250-256.
[5] S. Zheng and D. Czarkowski, “Modeling and digital control of a phase-controlled series-parallel resonant converter,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 707-715, Apr. 2007.
[6] M. Borage, S. Tiwari, and S. Kotaiah, “LCL-T resonant converter with clamp diodes: a novel constant-current power supply with inherent constant-voltage limit,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 741-746, Apr. 2007.
[7] R. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182, Apr. 1988.
[8] B. Yang, “Topology investigation for front end DC/DC power conversion for distributed power system,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, May 2003.
[9] H. W. Koertzen, J. D. van Wyk, and J. A. Ferreira, “Design of the half-bridge, series resonant converter for induction cooking,” in Proc. IEEE Power Electron. Spec. Conf., June 1995, pp. 729-735.
[10] Y. G. Kang and A. K. Upadhyay, “Analysis and design of a half-bridge parallel resonant converter,” IEEE Trans. Power Electron., vol. 3, no. 3, pp. 254-265, July 1988.
[11] S. D. Johnson and R. W. Erickson, “Steady-state analysis and design of the parallel resonant converter,” IEEE Trans. Power Electron., vol. 3, no. 1, pp. 93-104, Jan. 1988.
[12] A. K. S. Bhat, “Analysis and design of a series-parallel resonant converter,” IEEE Trans. Power Electron., vol. 8, no. 1, pp. 1-11, Jan. 1993.
[13] J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., Mar. 2001, vol. 2, pp. 728-735.
[14] B. C. Kim, K. B. Park, S. W. Choi, and G. W. Moon, “LLC series resonant converter with auxiliary circuit for hold-up time,” in Proc. Telecommunications Energy Conf., Oct. 2009, pp. 1-4.
[15] Y. Jang, M. M. Jovanovic, and D. L. Dillman, “Hold-up time extension circuit with integrated magnetics,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 394-400, Mar. 2006.
[16] B. Yang, P. Xu, and F. C. Lee, “Range winding for wide input range front end DC/DC converter,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., Mar. 2001, vol. 1, pp. 476-479.
[17] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., Mar. 2002, vol. 2, pp. 1108 -1112.
[18] B. Lu, “Investigation of high-density integrated solution for AC/DC conversion of a distributed power system,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, May 2006.
[19] D. Fu, Y. Liu, and F. C. Lee “A novel driving scheme for synchronous rectifiers in LLC resonant converter,” IEEE Trans Power Electron., vol. 24, no. 5, pp. 1321-1329, May 2009.
[20] Y. Liang, W. Liu, B. Lu, and J. D. van Wyk, “Design of integrated passive component for a 1MHz 1kW half-bridge LLC resonant converter,” in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, Oct. 2005, pp. 2223-2228.
[21] G. Hung, A. J. Zhang, and Y. Gu, “LLC series resonant dc-to-dc converter,” U.S. Patent 6344979, Feb. 2002.
[22] H. Choi, “Analysis and Design of LLC resonant converter with integrated transformer,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., Mar. 2007, pp. 1630-1635.
[23] B. Yang, R. Chen, and F. C. Lee, “Integrated magnetic for LLC resonant converter,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., Mar. 2002, vol. 1, pp. 346-351.
[24] H. J. Jiang, G. Maggetto, and P. Lataire "Steady-state analysis of the series resonant DC–DC converter in conjunction with loosely coupled transformer—above resonance operation," IEEE Trans. Power Electron., vol. 14, no. 3, pp. 469-480, May 1999.
[25] Y. Ye, C. Yan, J. Zeng, and J. Ying "A novel light load solution for LLC series resonant converter," in Proc. IEEE Telecommunications Energy Conf., Oct. 2007, pp.61-64.
[26] R. L. Lin and J. C. Ju, “LLC DC/DC resonant converter with PLL control scheme,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., Mar. 2007, pp. 1537-1543.
[27] T. Liu, Z. Zhou, A. Xiong, J. Zeng, and J. Ying, “A novel precise design method for LLC series resonant converter,” in Proc. IEEE Telecommunications Energy Conf., Sept. 2006, pp. 1-6.
[28] J. H. Jung and J. G. Kwon, “Theoretical analysis and optimal design of LLC resonant converter,” in Proc. Power Electron. and Appl. of European Conf., Sept. 2007, pp. 1-10.
[29] B. Lu, W. Lu, Y. Liang, F. C. Lee, and J. D. Van Wyk, “Optimal design methodology for LLC resonant converter,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., Mar. 2006, pp. 533-538.
[30] C. Adragna, S. De Simone, and C. Spini, “A design methodology for LLC resonant converters based on inspection of resonant tank currents,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., Feb. 2008, pp. 1361-1367.
[31] S. De Simone, C. Adragna, C. Spino, and G. Gattavari, “Design-oriented steady state analysis of LLC resonant converter based on FHA,” in Proc. IEEE SPEEDAM, May 2006, pp. 1-10.
[32] M. Z. Youssef and P. K. Jain, “A review and performance evaluation of control techniques in resonant converters,” in Proc. IEEE IECON, Nov. 2004, pp. 215-221.
[33] R. L. Lin and C. H. Wen, “PLL Control scheme for the electronic ballast with a current-equalization network,” IEEE Journal of Display Technology, vol. 2, Issue 2, pp. 160-169, June 2006.
[34] R. L. Lin and Y. T. Chen, “Electronic ballast for fluorescent lamps with phase-locked loop control Scheme,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 254-262, Jan. 2006.
[35] R. L. Lin and Y. T. Chen, “Phase-locked loop control based electronic ballast for fluorescent lamps,” in Proc. Electric Power Applications, May 2005, vol. 152, Issue 3, pp. 669-676.
[36] R. L. Lin and M. C. Yeh, “Inductor phase feedback for phase-locked loop control of electronic ballasts,” in Proc. IEEE Industry Applications Conf., Oct. 2005, vol. 4, pp. 2763-2769.
[37] Texas Instruments, “CMOS micropower phase-locked loop,” CD4046 datasheet, June 2003.
[38] National Semiconductor, “Low power dual operational amplifier,” LM358 datasheet, Oct. 2005.
[39] ST Microelectronics, “High-voltage half bridge driver,” L6384 datasheet, Feb. 2010.