| 研究生: |
陳逸仙 Chen, Yi-Shien |
|---|---|
| 論文名稱: |
陶瓷晶片型900/1800MHz雙頻天線頻寬改善與等效電路模擬分析 900/1800MHz dual-band ceramic chip antenna bandwidth improvement and equivalent circuit simulation and analysis |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 低溫共燒陶瓷 、螺旋天線 |
| 外文關鍵詞: | helical antenna, Low Temperature Co-fired Ceramic |
| 相關次數: | 點閱:76 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
縮小化及雙頻段的晶片型天線設計,已廣泛出現在國內外的論文[1][2]顯示此兩種設計已經成為天線設計的重要趨勢。但是在實現縮小化的同時,使得頻寬相對縮小。在本文中嘗試以低溫共燒陶瓷(Low Temperature Co-fired Ceramic)技術[3][4],實現一個λ/4的螺旋天線取代λ/4的單極天線,其大小為13mm*5.25mm*1.2mm,為了達成縮小化的訴求。並在螺旋天線中加入單極天線,產生雙頻操作,使得兩路徑彼此獨立。之後在單極天線的兩側在加入兩支單極寄生天線,其目的在產生高頻的寄生模態,以達到增加頻寬的效果。之後調整三支單極天線的長度,及之間的相對距離使得兩個模態互相靠近,增加頻寬。使得本論文的晶片型天線的第二模態頻寬擴增到由360MHz足以涵蓋DCS頻段[5]。且再第一模態及第二模態匹配最好的頻率點的平均增益[6]分別為-6.23dBi及-6.56dBi。使得本論文設計的晶片型天線符合此兩種趨勢。
另外,設計900/1800MHz雙頻螺旋單極天線同時,本論文中也依據傳輸線理論建立其等校電路,希望與原先的立體結構晶片型天線可以有良好的對照。除了藉由等效電路的探討已獲得更多天線工作原理資訊外,利用晶片型天線等效電路模型的建立以達到精確預測晶片型天線的實作量測結果,強化電路模擬在晶片型天線設計的功能,減少實作次數及電磁模擬的誤差。
* 作者:陳逸仙 ** 指導教授:李文熙
Abstract
The designs of dual-band and small antennas are widely proposed in national/international microwave conferences and academic journals.[1][2] It reveals that these two kinds of design already become important trend. Because of reducing antenna size, the antenna bandwidth would decrease. In this thesis, we take advantage of Low Temperature Co-fired Ceramic[3][4]to realizeλ/4 helical antenna instead of λ/4 monopole and hope to minimize antenna size.(antenna size= 13mm*5.25mm*1.2mm) Then we add monopole in theλ/4 helical antenna. In this way,this kind of antenna would have two independent resonance paths to produce dual-band operation .Then we add another two parasitic antenna to enhance the second mode bandwidth and adjust these three monopole antenna length and the distance of each other .Trying to make these two mode closer in high band for wider bandwidth effect. This skill could make the second mode bandwidth of our chip antenna to achieve 360MHz(could cover DCS band)[5].The average gain in low band is-6.23dBi and the average gain[6] in high band is -6.56dBi.In this way, the chip antenna could fit to these two kinds of trend.
At the same time, we set up equivalent circuit modal according to transmission line theory. We hope the circuit modal could analyze the chip antenna correctly and expect to acquire more information of the antennas operation principles through the discussions of circuit models. We could take advantage of circuit modal to predict chip antenna practical measurement and strengthen circuit modal function in antenna design to reduce fabrication times and E-M simulation mistake and error.
* Student: Yi-shien Chen ** Advisor: Wen-Shi Lee
[1] S.-T. Fang, S.-H. Yeh, and K.-J. Wong, “Planar inverted-F antennas forGSM/DCS mobile phones and dual ISM-band applications,” in Proc.IEEE AP-Symp., vol. 4, Waltham, MA, Nov. 2000, pp. 524–527.
[2]W. Choi, S. Kwon, and B. Lee, “Ceramic chip antenna using meander conductor lines,” Electron. Lett., vol. 37, pp. 933–934, 2001
[3]許正源,” LTCC的模組技術應用與未來,”工業材料176期,pp. 97- 106,
90年8月。
[4]George E. Ponchak, Senior, Donghoon Chun, Jong-Gwan Yook,, and Linda P. B.
Katehi,” The Use of Metal Filled Via Holes for Improving Isolation in LTCC RF and Wireless Multichip Packages” in proc. IEEE Transactions on AdvancedPackaging, Vol. 23, No.1, February 2000
[5] A. D. Yaghjian and S. R. Best, “Impedance, bandwidth and Q of antennas,” in IEEE Antennas Propagat. Int. Symp., June 2003, pp.501–504.
[6] H. T. Hui et al., “The input impedance and the antenna gain of the spherical helix antenna,” IEEE Trans. Antennas Propagat., vol. 49, pp.1235–1237, Aug. 2001.
[7]K.L. Wong, Planar Antennas for Wireless Communications, Wiley,Hoboken, NJ, 2003.
[8]M. Ali, S. S. Stuchly, and K. Caputa, “A wide-band dual meander-sleeve antenna,” JournalofElectromagnetic Waves and Applications, vol. 10, no. 9, pp. 1223-1236, 1996.
[9]A. Z. Elsherbeni, J. Chen, C. E. Smith, and Y. Rahmatt-Sami, “FDTD analysis of meander line antennas forpersonal communication applications,” Progress in Electromagnetics Research Symposium (PIERS),Cambridge, MA, 1997.
[10]A. Z. Elsherbeni, C. P. Huang, and C. E. Smith, “Finite difference time domain analysis of printed meander ine antennas for personal wireless communications, “Dept. Electrical Engineering, Univ. of Mississippi,Technical Report No. TR 00 1, Jan. 2000.
[11]A. Hoorfar and A. Perrotta, “An experimental study of microstrip antennas on very high permittivity ceramic substrates and very small ground planes,” IEEE Trans. Antennas Propagat., vol. 49, pp. 838–840,Apr. 2001.
[12]I. S. Ghosh, A. Hilgers, T. Schlenker, and R. Porath, “Ceramic microwave antennas for mobile applications,” J. Eur. Ceramic Soc., vol. 21, pp. 2621–2628, 2001.
[13]Constantine A. Balanis, “Antenna Theory Analysis and Design”, John Wiley & Sons, INC.1982
[14]W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed., John Wiley, New York, Chap. 2, 1998.
[15]郭彭淵, “無線網路卡印刷天線暨低溫共燒陶瓷高頻轉接器與濾波器設計, ” 交大電信工程系碩士論文;2001
[16]林鴻欽,“多層低溫共燒陶瓷製程技術, ”中華民國陶業研究學會會刊 第二十一卷 第四期
[17]M. Hosseini, M. Hakkak, “Design of a Dual-Band Quadrifilar Helix Antenna, ”
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 4, 2005
[18]Guangping Zhou Motorola Inc, “A Non-Uniform Pitch Dual Band Helix Antenna, ” 0-7803-6369-8/00/$10.00 Q2000 IEEE
[19]Igor Egorov* and Zhinong Ying, Ericsson Mobile Communications AB, Nya Vattentomet, SE-22183 Lund,“A non-uniform helical antenna for dualband cellular phones, ” -7803-6369-8/00/$10.00 Q2000 IEEE
[20]Cho-Kang HSU,“A New Non-uniform Meandered and Fork-Type Grounded Antenna(NMFGA) for Triple-Band Operations, ” IEICE TRANS. COMMUN., VOL.E87–B, NO.12 DECEMBER 2004
[21] K. Noguchi, M. Mizusawa, T. Yamaguchi, and Y. Okumura, “Numerical analysis of the radiation haracteristics of the meander line antennas consisting of two strip ” EEAP-S Digest, pp. 1598- 1601,1996.
[22]M. Ali, S. S. Stuchly, and M. Okoniewski, “Characterization of planar printed meander line antennas using the inite difference time domain technique,” IEEE AP-S Dig., pp. 1546-1 549, 1997.
[23]H.D. Chen, “Triple-band triangular-shaped meander monopole antenna with two coupled lines,” Microw. Opt. Technol. Lett., vol.37,no.3, pp.232–234, May 2003.
[24]林志榮, “多頻道小天線之設計及其量測技術之探討, ” 交大電信工程系碩士論文;2003.
[25]黃喬欣,”低溫共燒陶瓷晶片天線之設計,” 交大電信工程系碩士論文;2002.
[26]H. Nakano, N. Ikeda, Y. Y. Wu and R. Suzuki, “Realization of dual-frequency and wide-band VSWR performances using normal-mode helical and inverted-F antennas,” IEEE Trans. Antennas Propagat., vol. 46, pp. 788-793, Jun. 1998.
[27]K. Hirasawa and M. Haneishi, Analysis, Design, and Measurement of Small and Low-profile Antennas, Artech House, Boston London, Chap. 9, 1991.
[28]J. Bernardes, F. Peterkin, B. Hankla, J. Latess Naval Surface Warfare Center, Dahlgren Division Dahlgren, VA 22448 , “ANTENNA CIRCUIT MODEL
FOR TIME-DOMAIN TRANSIENT ANALYSIS, ”078055493-2199/$10.0~1999I EEE.
[29] Jack T. Rowley, “Modeling of Normal-Mode Helical Antennas at 900 MHz and 1.8 GHz for Mobile Communications Handsets Using the FDTD Technique,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 6, JUNE 2002
[30]D. M. Pozar, Microwave Engineering, 2nd ed., John Wiley, New York, Chap. 5, 1998.
[31]Nicolaos G. Alexopoulos and Shih-Chang Wu, “Frequency-Independent Equivalent Circuit Model for Microstrip Open-End and Gap Discontinuities, ” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 7, JULY 1994
[32]C. Icheln, P. Vainikainen, “Experimental Determination of the Loss Mechanismsin a Mobile Handset Chassis, ” IEEE Instrumentation and Measurement Technology Conference Budapest, May 21-23,2