簡易檢索 / 詳目顯示

研究生: 楊怡容
Yang, Yi-Rung
論文名稱: 以動態角色派任機制設計實現全自主式中型足球機器人系統
Design and Implementation of Dynamic Role Assignment for the Fully Autonomous Middle Size Robot Soccer System
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 88
中文關鍵詞: 動態角色派任機制無線通訊全方位視覺系統中型足球機器人
外文關鍵詞: Middle size robot soccer system, omnidirectional vision system, wireless communication, dynamic role
相關次數: 點閱:98下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要係探討中型足球機器人之動態角色派任機制及行為策略之研究。首先,依據RoboCup聯盟的規範,可以清楚地瞭解到中型足球機器人為一個全自主式(Fully Autonomous)機器人,架設於機器人上的全方位影像系統為主要的感測器。全方位影像系統的建立可拓展足球機器人的視野空間,經由獨立的影像處理系統可分析出足球機器人週遭環境的資訊,以進行影像的識別與重要特徵物體之定位。藉由無線通訊卡,作為兩個足球機器人的溝通介面,以傳遞個別機器人經由影像處理系統所偵測的場地資訊,並判斷出每隻機器人的角色以及球的控制歸屬權。此機器人涵蓋了獨立的影像處理系統、機構、策略決策系統以及無線通訊,使其具有自主能力,依據所得到影像資訊以及動態角色派任機制以進行攻守策略。最後,以實驗來驗證所設計之足球機器人系統的效益及適用性。

     This thesis is mainly to confer the study of the mechanism of dynamic role assignment and behavior strategies on the middle size robot soccer system. Firstly, according to the rules of RoboCup, we can understand clearly that the middle size soccer robot is a fully autonomous robot. The omnidirectional vision system with the broad view has been mounted on the robot and it is the key sensor of this middle size robot soccer system. Through the image processing system, we can analyze the information about the surroundings of the soccer robot to identify the objects and positions of the important features in the field. Secondly, using the wireless communication card, the robot could send the message of image from the independent image processing system to the other one. Then, the mechanism of role assignment will decide the role of each robot, and the control authority of the ball. Each robot possesses the fully autonomous abilities of independent image processing system, wireless communication, and strategy decision system. It would select the attacking or defending strategy according to the information of image and the result of the mechanism of dynamic role assignment. Finally, the efficiency and feasibility of the proposed system are demonstrated by practical experiments.

    Abstract                  I Acknowledgment              III Contents                  IV List of Figures               VII List of Tables                Ⅹ Chapter 1. Introduction            1 1.1 Motivation        1 1.2 Thesis Organization   3 Chapter 2. Setup of Middle Size Robot Soccer System  4 2.1 Introduction 4 2.2 Overview of the Middle Size Robot Soccer Game 5 2.3 Middle Size Robot Soccer System   5  2.4 Hardware Specification of the Robot Soccer System   8               2.4.1 The omnidirectional mirror and the CCD   8               2.4.2 Image Grabbing Card   10               2.4.3 Wireless Communication System   12               2.4.4 The Driver and DC Motor   14               2.4.5 Battery Module and Voltage Regular Module 17               2.4.6 On-board Compute   17 2.5 Hardware Configuration of the Soccer Robot 18 2.6 Summary 20 Chapter 3. Omnidirectional Vision System   22 3.1 Introduction   22 3.2 Overview of the Vision System   24               3.2.1 The Important Colors and Markers   26          3.2.2 Overview Image Processing Procedures   27 3.3 The Procedures of Image Processing System   29               3.3.1 The Image Capturing Sub-system   29               3.3.2 The YUV Range Initialization Sub-system   29               3.3.3 The BSA Sub system   31               3.3.4 The Objects Identification and Noise-Filter Sub-system   35 3.3.5 The Correction about the Distance of the Objects Sub-system            39         3.3.6 The Information of Real World about the Robot Sub-system        42 3.4 Results            43 Chapter 4. Dynamic Role Assignment and Strategy            45 4.1 Introduction            45 4.2 Strategy            46               4.2.1 Setup of Wireless Communication      48               4.2.2 Communication between Two Robots      51               4.2.3 The Dynamic Role Assignment Algorithm   53               4.2.4 Four Behavioral modes of Robot       55 4.2.5 The Decision of Target and the Mechanism of State Selection of Each Mode   60         4.2.6 The threshold values of the state selection                             68               4.2.7 Obstacles avoidance Using Angle Resultant Method            69 4.3 Fuzzy Logic Controller of the Middle Size Soccer Robot 71 4.4 Summary 74 Chapter 5. Experimental Results   75          5.1 Introduction   75          5.2 Operative Interface   76         5.3 Pictures of the Experimental Results 78 Chapter 6. Conclusion and Future Works 82 6.1 Conclusion 82 6.2 Future Works 83 References 84 Biography 88

    [1] H. Kitano (Ed.), RoboCup-97: Robot Soccer World Cup I, Springer, 1998.
    [2] S. J. Oh and E. L. Hall, “Guidance of a mobile robot using an omnidirectional vision navigation system,” Proc. SPIE 852 Mobile Robots II, pp.288-300, 1987.
    [3] Y. Yagi, S. Kawato and S. Tsuji,“Collision avoidance using omnidirectional image sensor COPIS),” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 910-915, April 1991.
    [4] Y. Sun, Q. Cao and W. Chen, “An object tracking and global localization method using omnidirectional vision system,” Proceedings of the 5th World Congress on Intelligent Control and Automation, pp. 4730-4735, June 2004.
    [5] Y. J. Lee, D. Y. Kim and M. J. Chung, Feature matching in omnidirectional images with a large sensor motion for map generation of a mobile robot,” Pattern Recognition Letters, vol. 25, pp. 413-427, 2004.
    [6] Y. Yagi, K. Imai, and M. Yachida, “Iconic memory-based omnidirectional route panorama navigation,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 564-570, September 2003.
    [7] E. Menegatti, T. Maeda and H. Ishiguro, Image-based memory for robot navigation using properties of omnidirectional images,” Robotics and Autonomous Systems, vol. 47, pp. 251-267, 2004.
    [8] H. Nagahara, Y. Yagi and M. Yachida, Superresolution modeling using an omnidirectional image sensor,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 33, no. 4, pp. 607-615, 2003.
    [9] R. A. Hicks and R. Bajcsy, “Reflective surfaces as computational sensor,” Image and Vision Computing, vol. 19, pp. 773-777, 2001.
    [10] M. Jamzad, A. Foroughnassiraei, E. Chiniforooshan, R. Ghorbani, M. Kazemi, H. Chitsaz, F. Mobasser and S.B. Sadjad, “Middle sized soccer robots: ARVAND,” RoboCup-99: Robot Soccer World Cup III, Springer, pp.61-73, 2000.
    [11] RoboCup, http://www.robocup.org/.
    [12] FIRA, http://www.fira.net/.
    [13] The rules of RoboCup 2004 Middle Size League, http://www.er.ams.eng.osaka-u.ac.jp/rc2004msl/msl-rules-2004.pdf
    [14] W. M. Shen, J. Adibi, R. Adobbati, B. Cho, A. Erdem, H. Moradi, B. Salemi and S. Tejada “Autonomous soccer robots,” RoboCup-97: Robot Soccer World Cup I, Springer, pp. 295-304, 1998.
    [15] Instruction Manual, YK 2849A, http://www.yoko-tech.com/support/YK-2849A.pdf, Yoko technology corp.
    [16] Instruction Manual, FX5600-VTDR128, http://cweb.msi.com.tw/, Micro-Star-Int’l Co. Ltd.
    [17] Instruction Manual, CG-WLPCIG-54, http://www.corega.com.tw/about/index.php, Corega Taiwan Inc.
    [18] Instruction Manual, Series MCDC 2805, Motion Controller for DC-Micromotors, Faulhaber Co.
    [19] Instruction Manual, RE-36 and HEDL 5540, http://www.maxonmotor.com/, Maxon Motor Ag.
    [20] R. C. Gonzales and R. E. Woods. Digital Image Processing. Addison-Wesley, 1992.
    [21] E. Ardizzone, A. Chella, and R. Pirrone, “A Neural Based Approach to Image Segmentation,” Proceedings of the International Conference on Artificial Neural Networks, pp. 1152-1156, London, 1994.
    [22] E. Ardizzone, A. Chella, and R. Rizzo, “Color Image Segmentation Based on a Neural Gas Network,” Proceedings of the International Conference on Artificial Neural Networks, pp. 1161-1164, London, 1994.
    [23] Y. Yagi, Y. Nishizawa, and M. Yachida, “Map-based navigation for a mobile robot with omnidirectional image sensor COPIS,” IEEE Transactions on Robotics. and Automation, vol. 11, pp. 634–648, Oct. 1995.
    [24] C. Pegard and E. M. Mouaddib "A mobile robot using a panoramic view,” in Proceedings of the IEEE International Conference on Robotics and Automation, 0-7803-2988-4/96, pp. 89-94, 1996.
    [25] D.Y. Kim, Y.J Lee., and M.J. Chung, “Feature matching for omnidirectional image based on singular value decomposition,” in Proceedings of International Conference on Control, Automation and Systems, 2002
    [26] S.W. Bang and M.J. Chung, “Sensor fusion for omnidirectional sensor-based local homming navigation using fuzzy arithmetic,” Intelligent Automation and Soft Computing, 1998.
    [27] E. M. Mouaddib and Bruno Marhic, Geometrical matching for mobile robot localization,” IEEE Transactions on Robotics and automation, vol. 16, no. 5, pp.542-552, october 2000.
    [28] I.D. Scalbe, “Natural representations for straight lines and the Hough transform on discrete arrays,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 9, pp. 941-950, sept 1989.
    [29] C. Marques and P. Lima, “A localization method for a soccer robot using a vision-based omni-directional sensor,” in Proc. Of RoboCup Workshop, Melbourne, Australia, 2000.
    [30] G. Klancar, M. Kristan and R. Karba, “Wide-angle camera distortions and non-uniform illumination in mobile robot tracking,” Robotics and Autonomous Systems, vol. 46, pp. 125-133, February 2004.
    [31] R. Jain, R. Kasturi, and B. G. Schunk, Machine Vision, McGraw-Hill Book Co., 1995.
    [32] C. Marques and P. Lima, “Multi-sensor navigation for soccer robots,” in RoboCup-2001: Robot Soccer World Cup V, pp. 144-153, 2002.
    [33] E. Rimon, “Exact robot navigation using artificial potential functions,” IEEE Trans. on Robotics and Automation, vol. 8, no. 5, pp. 501-518, Oct. 1992.
    [34] J. H. Kim, K. C. Kim, D. H. Kim, Y. J. Kim and P. Vadakkepat, “Path planning and role selection mechanism for soccer robots,” in Proceedings of the IEEE International Conference on Robotics and Automation, 0-7803-4300-x-5/98, pp. 3216-3221, 1998.
    [35] C. A Lai, Design of fuzzy field control for a one-on-one robot soccer system, Master Thesis, Dept. of Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, R.O.C., June 2001.
    [36] T.H. S. Li, C.Y. Chen, S. Lee, and Y.Z. Guo, ”Design of fuzzy ring univector field and its application to robot soccer game”, in Proceedings of the IEEE International Symposium onComputational Intelligence in Robotics and Automation, 0-7803-7866-0/03, pp. 85-90, 2003.
    [37] Jin-Oh Kim, Pradeep K. Khosla, H. Kitano “Real-Time Obstacle Avoidance Using Harmonic Potential Function,” IEEE Transactions on Robotics and Automaation., Vol. 8, No.3, pp. 338-349, June 1992.
    [38] C. Y. Chen, “Design and Implementation of a Role Assignment for the Five-on-Five Robot Soccer Competition,” Master Thesis, Dept. of Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, R.O.C., June 2003.
    [39] 黃俊堯, Key to winSock network programming, 資訊人文化事業出版, 1996.

    下載圖示 校內:2007-07-04公開
    校外:2007-07-04公開
    QR CODE