簡易檢索 / 詳目顯示

研究生: 林彥行
Lin, Yen-Hsing
論文名稱: 以超音波噴霧熱裂解法沉積氧化鋅奈米顆粒之紫外光檢測器之研究
Investigation of ZnO-based Ultraviolet Photodetector with In-situ Grown ZnO Nanoparticles Deposited by Ultrasonic Spray Pyrolysis Deposition
指導教授: 許渭州
Hsu, Wei-Chou
共同指導教授: 劉漢胤
Liu, Han-Yin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 51
中文關鍵詞: 超音波噴霧熱裂解法紫外光檢測器氧化鋅覆蓋層奈米結構
外文關鍵詞: Ultrasonic spray pyrolysis deposition, UV photodetector, zinc oxide, cap layer, nanostructure
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要在探討以超音波噴霧熱裂解法沉積氧化鋅薄膜應用於紫外光感測器技術之研究。超音波噴霧熱裂解法具有成本低廉、製程時間短及非真空等優勢。此外,用不同的速度沉積薄膜甚至可得到不同晶體結構,進而大幅改變元件之特性。
    為了瞭解氧化鋅薄膜和鈍化層的特性,在本研究中使用(一)掃描式電子顯微鏡、(二) X-射線繞射分析、(三) 光致發光、(四) X射線光電子能譜學、(五)穿透式電子顯微鏡。我們透過這些分析得到氧空缺的分布以及元件表面的化學特性,並針對其調整製程參數以達到更好的元件特性。
    在這次研究中我們設計四種不同結構的元件探討氧化鋅奈米顆粒的特性以及氧空缺和金屬氧化物半導體的氧氣化學吸附作用在元件中扮演的角色。在取得各方條件的平衡後我們製作出氧化鋅奈米顆粒包含氧化鎂鋅覆蓋層的金屬-半導體-金屬之紫外光感測器,於偏壓5伏特的情況下,黑箱量測所得的暗電流低至約0.056微安培;同時,在波長340奈米、強度為36.1微瓦的紫外光照射下,得到約687.2微安培之光電流,其光暗電流比可達約11365.9倍,且偵測度達到2.23×〖10〗^12(Jones)。響應速度方面,上升時間約為14秒,下降時間約為8秒。

    This thesis mainly investigates the zinc oxide thin film deposited by ultrasonic pyrolysis and applies to ultraviolet photodetectors. Ultrasonic Spray Pyrolysis Deposition (USPD) is a thin film deposition technology which is low cost, non-vacuum, rapid process and easy to carry out precursor doping. In addition, we can obtain different crystal structures by controlling the growth rate of USPD and drastically change the performance of device.
    In order to understand the structure and chemical properties of ZnO nanoparticles and cap layer, the (1) scanning electron microscopy, (2) X-ray diffraction, (3) photoluminescence, (4)X-ray photoelectron spectroscopy and (5) transmission electron microscopy analyses are adopted in this research. By above analyses, we got the information of oxygen vacancy distribution and chemical absorption of oxygen molecule phenomenon on ZnO surface, then we tuned the parameters of processes for better performance of devices.
    In this research, we designed four different structures to investigate the performances of in-situ grown ZnO nanoparticles and the roles that oxygen vacancy and the chemical absorption of oxygen molecule phenomenon played in. The dark current measured by the black box is as low as about 0.056 µA at a bias voltage of 5 V. At the same time, about 687.2 µA was measured under the illumination of 340 nm UV light with intensity of 36.1µW, photo-to-dark current ratio up to 11365.9 times and the detectivity is about 2.23×〖10〗^12 Jones. In the case of dynamic performance, the rise time and fall time are 14 s and 8 s, respectively.

    摘要 I Abstract III 誌謝 V Content VI Table Captions IX Figure Captions X Chapter 1 Introduction 1 1-1 Background and Motivation 1 1-2 Introduction to ZnO– A Wide Bandgap Material 1 1-2.1 Wide Bandgap Semiconductor Material 1 1-2.2 ZnO Nanostructure 2 1-3 ZnO Deposited by Ultrasonic Spray Pyrolysis Deposition 3 Chapter 2 Device Fabrication 5 2-1 ZnO planar Metal-Semiconductor-Metal Ultraviolet Photodetectors (Device A) 5 2-1.1 ZnO Thin Film Deposited by USPD 5 2-1.2 Electrode 6 2-2 ZnO Metal-Semiconductor-Metal Ultraviolet Photodetectors with Nanoparticles (Device B) 8 2-2.1 ZnO Seed Layer and In-situ Grown ZnO Nanoparticles Deposited by USPD 8 2-2.2 Electrode 9 2-3 Vertical Structure PDs with ZnO Nanoparticles (Device C) 12 2-3.1 Bottom Electrode Deposited 12 2-3.2 ZnO Seed Layer and In-situ Grown ZnO Nanoparticles Deposited by USPD 13 2-3.3 Top Electrode Contact 13 2-4 ZnO Metal-Semiconductor-Metal Ultraviolet Photodetectors with Nanoparticles and Cap Layer (Device D) 14 2-4.1 ZnO Seed Layer and In-situ Grown ZnO Nanoparticles Deposited by USPD 14 2-4.2 Cap Layer Deposited by CBD 14 2-4.3 Electrode 15 Chapter 3 Result and Discussion 16 3-1 Material Analysis 16 3-1.1 Scanning Electron Microscope 16 3-1.2 X-ray Diffraction 19 3-1.3 Photoluminescence 21 3-1.4 X-ray Photoelectron Spectroscopy 23 3-1.5 Transmission Electron Microscope 25 3-2 ZnO Planar Metal-Semiconductor-Metal Ultraviolet Photodetectors (Device A) 28 3-2.1 Current-Voltage Measurement 28 3-2.2 Spectral Response Measurement 28 3-2.3 Detectivity 29 3-3 ZnO Metal-Semiconductor-Metal Ultraviolet Photodetectors with Nanoparticles (Device B) 31 3-3.1 Current-Voltage measurement 31 3-3.2 Spectral Response Measurement 31 3-3.3 Detectivity 32 3-3.4 Dynamic Behavior Measurement 32 3-4 Vertical Structure PDs with ZnO Nanoparticles (Device C) 35 3-4.1 Current-Voltage Measurement 35 3-4.2 Spectral Response Measurement 35 3-4.3 Detectivity 35 3-4.4 Dynamic Behavior Measurement 36 3-5 ZnO Metal-Semiconductor-Metal Ultraviolet Photodetectors with Nanoparticles and Cap Layer (Device D) 39 3-5.1 Current-Voltage Measurement 39 3-5.2 Spectral Response Measurement 39 3-5.3 Detectivity 39 3-5.4 Dynamic Behavior Measurement 40 3-6 Comparison 43 Chapter 4 Conclusion and Future Work 44 4-1 Conclusion 44 4-2 Future Work 45 References 46

    [1] P. Cheong, K. Chang, Y. Lai, S. Ho, I. Sou and K. Tam, "A Zigbee-based wireless sensor network node for ultraviolet detection of flame," IEEE Transactions On Industrial Electronics, vol. 58, no. 11, pp. 5271-5277, Nov 2011.
    [2] T. Barber, J. Castro, S. Hnatyshyn, N. Ayala, J. Storey and W. Partridge, "Analysis of diesel engine exhaust by ultraviolet absorption spectroscopy," Analytical Letters, vol. 34, no. 12, pp. 2493-2506, 2001.
    [3] P. Dress, M. Belz, K. Klein, K. Grattan and H. Franke, "Water-core waveguide for pollution measurements in the deep ultraviolet," Applied Optics, vol. 37, no. 21, pp. 4991-4997, 21 Jul 1998.
    [4] W. Franks, M. Kiik and A. Nathan, "UV-responsive CCD image sensors with enhanced inorganic phosphor coatings," IEEE Transaction in Electron Device, vol. 50, no. 2, pp. 352-358, Feb 2003.
    [5] L. O. Bjorn and R. L. McKenzie, "Attempts to probe the ozone layer and the ultraviolet-B levels of the past," AMBIO, vol. 36, no. 5, pp. 366-371, JUL 2007.
    [6] O. Bulteel, A. Afzalian and D. Flandre, "Fully integrated blue/UV SOI CMOS photosensor for biomedical and environmental applications," Analog Integrated Circuits and Signal Processing, vol. 65, no. 3, pp. 399-405, Dec 2010.
    [7] N. Nasiri, R. Bo, H. Chen, T. P. White, L. Fu and A. Tricoli, "Structural Engineering of Nano-Grain Boundaries for Low-Voltage UV-Photodetectors with Gigantic Photo- to Dark-Current Ratios," Advanced Optical Materials, vol. 4, no. 11, pp. 1787-1795, Nov 2016.
    [8] F. H. Alsultany, Z. Hassan and N. M. Ahmed, "Low-power UV photodetection characteristics of ZnO tetrapods grown on catalyst-free glass substrate," Sensors and Actuators A-Physical, vol. 250, pp. 187-194, Oct 2016.
    [9] F. Gonzalez-Posada, R. Songmuang, M. Den Hertog and E. Monroy, "Room-Temperature Photodetection Dynamics of Single GaN Nanowires," Nano Letters, vol. 12, no. 1, pp. 172-176, Jan 2012.
    [10] C. Chen, P. Zhou, N. Wang, Y. Ma and H. San, "UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors," Nanomaterials, vol. 8, no. 1, Jan 2018.
    [11] M. Azadinia, M. Fathollahi, M. Ameri, S. Shabani and E. Mohajerani, "Low noise ultraviolet photodetector with over 100% enhanced lifetime based on polyfluorene copolymer and ZnO nanoparticles," Journal of Applied Polymer Science, vol. 135, no. 31, Aug 2018.
    [12] S. Mitra, A. Aravindh, G. Das, Y. Pak, I. Ajia, K. Loganathan, E. Di Fabrizio and I. S. Roqan, "High-performance solar-blind flexible deep-UV photodetectors based on quantum dots synthesized by femtosecond-laser ablation," Nano energy, vol. 48, pp. 551-559, Jun 2018.
    [13] A. S. Dive, K. P. Gattu, N. P. Huse, D. R. Upadhayay, D. M. Phase and R. B. Sharma, "Single step chemical growth of ZnMgS nanorod thin film and its DFT study," Materials Science and Engineering B-Advance Functional Solid-State Materials, vol. 228, pp. 91-95, Feb 2018.
    [14] Q.-M. Fu, D.-C. He, Z.-C. Yao, J.-L. Peng, H.-Y. Zhao, H. Tao, Z. Chen, Y.-F. Tu, Y. Tian, D. Zhou, G. Zheng and Z.-B. Ma, "Self-powered ultraviolet photodetector based on ZnO nanorod arrays decorated with sea anemone-like CuO nanostructures," Mater. Lett., vol. 222, pp. 74-77, 1 Jul 2018.
    [15] H. Xue, . X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan and . Q. Xu, "TiO2 based metal-semiconductor-metal ultraviolet photodetectors," Applied Physics Letters, vol. 90, no. 20, 14 May 2007.
    [16] X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei and S. Ruan, "Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes," Applied Physics Letters, vol. 94, no. 12, 23 Mar 2009.
    [17] S. MOHAMMAD, A. SALVADOR and H. MORKOC, "Emerging Gallium Nitride Based Devices," Proceedings of The IEEE, vol. 83, no. 10, pp. 1306-1355, Oct 1995.
    [18] . L. S. Vikas, K. A. Vanaja, . P. P. Subha and M. K. Jayaraj, "Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction," Sensors and Actuators A-Physical, vol. 242, pp. 116-122, May 2016.
    [19] H. Kind, H. Yan, B. Messer, M. Law 且 P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Advance Materials, 第 冊14, 編號 2, p. 158, 16 Jan 2002.
    [20] E. Monroy, F. Omnes 且 F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semiconductor Science and Technology, 第 冊18, 編號 4, pp. R33-R51, Apr 2003.
    [21] P. Sharma, K. Sreenivas 且 K. Rao, “Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering,” Journal of Applied Physics, 第 冊93, 編號 7, pp. 3963-3970, 1 Apr 2003.
    [22] W. Yang, S. Hullavarad, B. Nagaraj, I. Takeuchi, R. Sharma, T. Venkatesan, R. Vispute 且 H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Applied Physics Letters, 第 冊82, 編號 20, pp. 3424-3426, 19 May 2003.
    [23] T. Zhai, X. Fang, M. Liao, . X. Xu, . H. Zeng, . B. Yoshio and D. Golberg, "A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors," Sensors, vol. 9, no. 8, pp. 6504-6529, Aug 2009.
    [24] C. Soci, A. Zhang, . X.-Y. Bao, H. Kim, Y. Lo and D. Wang, "Nanowire Photodetectors," Journal of Nanoscience and Nanotechnology, vol. 10, no. 3, pp. 1430-1449, Mar 2010.
    [25] C.-Y. Chen, J. R. D. Retamal, . I.-W. Wu, D.-H. Lien, M.-W. Chen, Y. Ding, Y.-L. Chueh, C.-I. Wu and J.-H. He, "Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires," ACS Nano, vol. 6, no. 11, pp. 9366-9372, Nov 2012.
    [26] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura and Y. Ohya, "Photoconductivity of ultrathin zinc-oxide films," Appl. Phys., vol. 33, no. 12A, pp. 6611-6615, Dec 1994.
    [27] M.-W. Chen, J. R. D. Retamal, C.-Y. Chen and J.-H. He, "Photocarrier Relaxation Behavior of a Single ZnO Nanowire UV Photodetector: Effect of Surface Band Bending," IEEE Electron Device Letters, vol. 33, no. 3, pp. 411-413, Mar 2012.
    [28] Y. Liu, C. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen and M. Wraback, "Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD," Journal of Electronic Materials, vol. 29, no. 1, pp. 69-74, Jan 2000.
    [29] B. Q. Cao, . T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura and T. Okada, "ZnO Nanowalls Grown with High-Pressure PLD and Their Applications as Field Emitters and UV Detectors," Journal of Physical Chemistry C, vol. 113, no. 25, pp. 10975-10980, 25 Jun 2009.
    [30] M.-L. Tu, Y.-K. Su and C.-Y. Ma, "Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 100, no. 5, 1 Sep 2006.
    [31] A. M. Selman, Z. Hassan, M. Husham and . N. M. Ahmed, "A high-sensitivity, fast-response, rapid-recovery p-n heterojunction photodiode based on rutile TiO2 nanorod array on p-Si(111)," Applied Surface Science, vol. 305, pp. 445-452, 30 Jun 2014.
    [32] Y. Kwon, K. Kim, C. Lim and K. Shim, "Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organochemical route," Journal of Ceramic Processing Research, vol. 3, no. 3, pp. 146-149, 2002.
    [33] B. Lin, Z. Fu and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied Physics Letters, vol. 79, no. 7, pp. 943-945, 13 Aug 2001.
    [34] S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo and H. Jeon, "Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition," NANOSCALE RESEARCH LETTERS, vol. 7, 6 Jun 2012.
    [35] B. Coppa, R. Davis and R. Nemanich, "Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000(1)over-bar)," Applied Physics Letters, vol. 82, no. 3, pp. 400-402, 20 Jan 2003.
    [36] P. Hsieh, Y. Chen, K. Kao and C. Wang, "Luminescence mechanism of ZnO thin film investigated by XPS measurement," Applied Physics a-Materials Science & Processing, vol. 90, no. 2, pp. 317-321, Feb 2008.
    [37] . M. Puchert, P. Timbrell and R. Lamb, "Postdeposition annealing of radio frequency magnetron sputtered ZnO films," Journal of Vacuum Science & Technology a-Vzcuum Surface and Films, vol. 14, no. 4, pp. 2220-2230, Jul 1996.
    [38] S. Lany and A. Zunger, "Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides," Physical Review Letters, vol. 98, no. 4, 26 Jan 2007.
    [39] D. Bagnall, . Y. Chen, Z. Zhu, T. Yao, M. Shen and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Applied Physics Letters, vol. 73, no. 8, pp. 1038-1040, 24 Aug 1998.
    [40] L. Dou, Y. (. Yang, J. You, Z. Hong, W.-H. Chang, G. Li and Y. Yang, "Solution-processed hybrid perovskite photodetectors with high detectivity," Nature Communications, vol. 5, Nov 2014.

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE