簡易檢索 / 詳目顯示

研究生: 陳鵬宇
Chen, Peng-Yu
論文名稱: 採用改良式電容內插電路之二階式類比-數位轉換器研製
Design of Two-Step A/D Converter with Improved Capacitor Interpolation Circuit
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 107
中文關鍵詞: 線性度二階式類比-數位轉換器電容內插
外文關鍵詞: two-step analog-to-digital converter, capacitor interpolation circuit, linearity
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,伴隨資訊科技之蓬勃發展,各式電子產品及高速通訊電路中,皆須具備同時擁有高解析度及高轉換速度之類比-數位轉換器。因此本文即提出ㄧ輔以新式前置放大器,並具短暫穩定時間特色之二階式電容內插電路,以完成ㄧ顆具有10位元解析度,且每秒可處理超過兩億五千萬組資料之二階式類比-數位轉換器,同時並對功率消耗及抵消偏移電壓或雜訊干擾予以詳細之考量。而為驗證文中各電路設計之成果,本文使用電路模擬軟體HSPICE,並輔以 TSMC 0.18 1P6M CMOS製程來驗證架構中各電路之設計,而由模擬分析之結果,應有助於佐證本設計之可行性。

      With the rapid development of information technology, an analog-to-digital converter is found critically needed in novel electronic products and high-speed communication circuits. Therefore, this paper has proposed a 10-bit two-step analog-to-digital converter embedded with the improved capacitor interpolation circuit as well as a novel amplifier, where the settling time is seen relatively short when compared to other methods. This completed converter can process 250 million samples per second. In the design, the low power consumption, voltage offset, and noise interference were all included into the considerations. To validate the effectiveness of this method, with the aid of TSMC 0.18 1P6M CMOS process, the circuit simulation software HSPIC was utilized, by which the simulation results obtained helped support the feasibility of the proposed design.

    中文摘要                        I 英文摘要                        II 誌謝                          III 目錄                          IV 表目錄                         VII 圖目錄                         VIII 第一章 緒論                      1  1.1 研究背景                   1  1.2 研究方法                   2  1.3 論文架構                   3 第二章 類比-數位轉換器簡介              4  2.1 尼奎斯特速率類比-數位轉換器架構簡介     4  2.2 高速尼奎斯特速率類比-數位轉換器架構介紹   5  2.2.1 快閃式類比-數位轉換器         6  2.2.2 二階式類比-數位轉換器         8  2.2.3 折疊式類比-數位轉換器         12  2.2.4 管線式類比-數位轉換器         15  2.2.5 時間分離式類比-數位轉換器       19  2.3 類比-數位轉換器重要參數介紹         21  2.3.1 解析度                 21  2.3.2 訊號雜訊比               22  2.3.3 訊號與雜訊失真比            26  2.3.4 動態範圍                27  2.3.5 偏移與增益誤差             28  2.3.6 非線性程度               29 第三章 類比-數位轉換器架構設計            30  3.1 類比-數位轉換器基礎架構之選取        31  3.2 改良之二階式架構介紹             34  3.2.1 傳統二階式架構之改進          34  3.2.2 粗調類比-數位轉換器架構        37  3.2.3 參考電壓產生器             39  3.2.4 微調類比-數位轉換器架構        42  3.2.5 數位謬誤校正電路            44  3.3 轉換器系統電路設計與實現           45  3.3.1 偏壓電路設計              46  3.3.1.1 帶差參考電壓產生電路       46  3.3.1.2 改良式偏壓電流源設計       50  3.3.2 類比電路設計              53  3.3.2.1 靴帶式開關電路          53  3.3.2.2 前置放大器架構設計        57  3.3.2.3 內插電容電路設計         66  3.3.2.4.比較器架構設計          69  3.3.3 數位電路設計              71  3.3.3.1 轉態點偵測器與投票電路       71  3.3.3.2 編碼器與數位謬誤校正電路設計    75 第四章 電路實現與模擬分析               79  4.1 偏壓/偏流電路驗證              79  4.1.1 帶差參考電壓產生電路          79  4.1.2 改良式偏壓電流源            82  4.2 類比電路之模擬分析              83  4.2.1 靴帶式開關電路之實現與模擬       84  4.2.2 改良式線性負載放大器模擬分析      86  4.2.3 電容內插電路模擬分析          87  4.2.4 比較器之模擬分析            97 第五章 結論與未來研究方向               101  5.1 結論                     101  5.2 未來研究方向                 102 參考文獻                        103 作者簡介                        107

    [1] G. E. Moore,“Cramming More Components onto Integrated Circuits,”Electronics Magazine, Vol. 38, No. 8, April 1965.
    [2] T. Rengachari, V. Sharma, G. C. Temes, and U. Moon,“A 10-Bit Algorithmic A/D Converter for Cytosensor Application,” IEEE International Symposium on Circuits and Systems, Kobe, Japan, pp. 6186-6189, May 2005.
    [3] 嚴祥銘,“1.8伏特十位元每秒135百萬次取樣速率二階式類比數位轉換器”,成功大學電機工程學系碩士論文, 2005年七月。
    [4] A. Wiesbauer et al., “A Fully Integrated Analog Front-End Macro for Cable Modem Applications in 0.18 CMOS,” IEEE Journal of Solid-State Circuits, Vol. 37, No. 7, pp. 866-873, July 2002.
    [5] M. Clara, A. Wiesbauer, and F. Kuttner, “A 1.8V Fully Embedded 10 b 160MS/s Two-Step ADC in 0.18 COMS,” IEEE Custom Integrated Circuits Conference, Florida, U.S.A., pp. 437-440, May 2002.
    [6] R. Jacob Baker, CMOS Mixed-Signal Circuit Design, New York, John Wiley &Sons, 2002.
    [7] R. van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd Edition, Kluwer Academic Publishers, 2003.
    [8] D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York, John Wiley &Sons, 1997.
    [9] B. Razavi, “Design of Sample-and-Hold Amplifiers for High-Speed Low-Voltage A/D Converters,” IEEE Custom Integrated Circuits Conference, Santa Clara, USA, pp. 59-66, May 1997.
    [10] K. Leelavattananon, C. Toumazou and J. B. Hughes, “Linearity Enhancement Techniques for MOSFET-ONLY SC Circuit,” IEEE International Symposium on Circuits and Systems, Switzerland, pp. 453- 456, May 2000.
    [11] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Company, Boston, USA, 2001.
    [12] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th Edition, New York, John Wiley &Sons, 2001.
    [13] G. M. Yin, F. O. Eynde and W. Sansen,“A High-Speed CMOS Comparator with 8-b Resolution,”IEEE Journal of Solid-State Circuits, Vol.27, No.2, pp. 208-211, February 1992.
    [14] R. Jacob Baker, H. W. Li and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, New York, John Wiley &Sons, 1997.
    [15] S. Varma, K. Suyama and V. Gopinathan, “Analysis of Non-Idealities in Folding and Interpolating ADCs Using a Behavioral Model Approach,”IEEE International Symposium on Circuits and Systems, Atlanta, USA, pp. 508-511, May 1996.
    [16] L. Singer, S. Ho, M. Timko and D. Kelly, “A 12b 65MSample/s CMOS ADC with 82dB SFDR,” IEEE International Solid-State Circuits Conference, San Francisco, U.S.A, pp. 38- 39, February 2000.
    [17] P. M. Figueiredo, P. Cardoso, A. Lopes, C. Fachada, N. Hamanishi, K. Tanabe, and J. Vital, “A 90nm CMOS 1.2V 6b 1GG/s Two-Step Subranging ADC,” IEEE International Solid-State Circuits Conference, California, U.S.A., pp. 568- 569, February 2006.
    [18] K. Y. Kim, N. Kusayanagi, and A. A. Abidi,“A 10-bit,100 MS/s CMOS A/D Converter,”IEEE Custom Integrated Circuits Conference, San Diego, U.S.A, pp. 419-422, May 1996.
    [19] H. S. Chen, B. S. Song, and K. Bacrania,“A 14-b 20 Msamples/s CMOS pipelined ADC,”IEEE Journal of Solid-State Circuits, Vol. 36, No. 6, pp. 997-1001, June 2001.
    [20] K. L. Lin, A. Kemna, and B. J. Hosticka, Modular Low-power, High-speed CMOS Analog-to-digital Converter For Embedded Systems, Boston, Kluwer Academic Publishers, 2003
    [21] J. Goes, J. Vital, and J. Franca, Systematic Design for Optimization of Pipelined ADCs, Boston, Kluwer Academic Publishers, 2001
    [22] G. Geelen,“A 6-b 1.1 GSample/s CMOS A/D Concerter,”IEEE International Solid-State Circuits Conderence, San Francisco, U.S.A., pp. 128-129, February 2001.
    [23] R. C. Taft and M. R. Tursi, “A 100-MS/s 8-b CMOS Subranging ADC with Sustained Parametric Performance from 3.8 V down to 2.2V,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 3, pp. 331-338, March 2001.
    [24] I. Mehr and L. Singer,“A 55-mW, 10-bit, 40-MSample/s Nyquist-rate CMOS ADC,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 3, pp. 318-325, March 2000.
    [25] E. A. Vittoz and O. Neyround,“A Low-Voltage CMOS Bandgap Reference, ” IEEE Journal of Solid-State Circuits, Vol. SC-14, pp. 655-657, June 1979.
    [26] Y. Li, S. Yufeng, L. Lian, and Z. Zengyu,“CMOS bandgap voltage reference with 1.8-V power supply,”IEEE ASIC, 2003. Proceedings. 5th International Conference, Beijing, China, Vol. 1, pp. 611-614, October 2003.
    [27] A. R. Bugeja and B. S. Sing,“A Self-Trimming 14-b 100 MS/s CMOS DAC,” IEEE Journal of Solid-State Circuits, Vol. 24, pp. 1517-1522, December 1989.
    [28] C. L. Portmann and T. H. Y. Meng,“Power-Efficient Metastability Error Reduction in CMOS Flash A/D Converters,” IEEE Journal of Solid-State Circuits , Vol. 31, No. 8, pp. 1132-1140, August 1996.
    [29] A. G. W. Venes and R. J. van de Plassche,“An 80-MHz, 80-mW, 8-b CMOS Folding A/D Converter with Distributed Track-and-Hold Preprocessing,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 12, pp. 1846-1853, December 1989.
    [30] M Ferro, F. Salerno, and R. Castello,“A Floating CMOS Voltage Reference for Differential Applications,” IEEE Journal of Solid-State Circuits, Vol. 24, No. 3, pp. 690-697, June 1989.
    [31] A. M. Abo and P. R. Gray,“A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, pp. 599-606, May 1999.

    無法下載圖示 校內:2026-06-22公開
    校外:2026-06-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE