| 研究生: |
栗宜進 Li, Yi-Jin |
|---|---|
| 論文名稱: |
孤立波作用於直立壁上之壓力分佈 Pressure Distribution of Solitary Waves on a Vertical Wall |
| 指導教授: |
陳陽益
Chen, Yang-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 孤立波 、直立壁 、最大受力 、水工模型試驗 、數值模擬 |
| 外文關鍵詞: | Solitary wave, Vertical wall, Maximum instantaneous force, Hydraulic experiment, Numerical simulation. |
| 相關次數: | 點閱:120 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在兩相同波高之孤立波對撞或孤立波撞擊直立壁面之反射,在往昔的研究中多注重於孤立波之表面行為變化,如最大溯升、殘留時間及位相偏移等。對於孤立波撞擊直立壁面時,壁面的受力及其分佈之研究甚少。本文以試驗方式探討孤立波撞擊光滑直立壁之受力行為及其特性變化,包含孤立波在撞擊直立壁時,直立壁前之底床波壓變化、直立壁上之最大壓力分佈,及直立壁上之瞬時受力分佈等。在固定水深及不同的相對波高H/h (入射波高對靜水深之比)之試驗條件下進行試驗,並在直立壁面上密集擺設波壓計,對孤立波撞擊直立壁之最大受力及其受力分佈與壁前之底床波壓等作一量化處理。
試驗結果發現相對波高(H/h)會影響底床波壓及直立壁面上之受力分佈。值得一提的是在較大相對波高(H/h>0.4)時,因受非線性效應與交互作用之影響,在壁面上之受力分佈會呈現不對稱之雙峰形狀,此為首次以試驗證明此物理現象。另外,本文輔以解2-D RANS及 紊流模式之數值模擬(COBRAS)結果進行比較,結果顯示數值模擬與試驗結果有相當一致的準確性。
In this paper we conducted hydraulic experiment to study the pressure distribution of solitary wave on a vertical wall. Under different normalized amplitude ratios (H/h, initial wave amplitude over constant water depth), we analyzed the maximum instantaneous force, pressure distribution and the bottom pressure due to solitary waves collide on a vertical wall, these results were compared with available numerical model and theoretical analytic which were quantitative agreement.
We used wave gauges and pressure sensors to conduct the experiment, especially on a vertical wall and the bottom in front of a vertical wall, we concentrated to set pressure sensors. In addition to, we compared with numerical model results (COBRAS) which solves the 2-D Reynolds Navier-Stokes (RANS) and non-linear turbulence closure model and show quantitative agreements.
It is interesting to note that at higher normalized amplitude (H/h>0.4), the bottom pressure in front of a vertical wall and the force distribution on a vertical wall appears asymmetry double peaks, which is first shown by experiment, and the maximum instantaneous force is proportional to the normalized amplitude ratio (H/h).
參考文獻
1.Benney, D.J. and Luke, J.C., “Interactions of permanent waves of finite amplitude. ” J.Math. Phys., Vol. 43, pp. 309-313, 1964.
2.Launder, B.E. and Rodi, W., “The Turbulent Wall Jet Measurements and .” Annual Review of Fluid Mechanics., Vol. 15, pp. 429-459, 1983.
3.Byatt-Smith, J.G.B., “An integral equation for unsteady surface waves and a comment on the Boussinesq equation.” Journal of Fluid Mechanics, Vol. 49, pp. 625-633, 1971.
4.Byatt-Smith, J.G.B., “The reflection of a solitary wave by a vertical wall.” Journal of Fluid Mechanics, Vol. 197, pp. 503–521, 1988.
5.Boussinesq, M.J., “Theorie de l'intumescence liquide, appeIee onde solitaire ou de translation, se propageant dans un canal rectangulaire.” Comptes Rendus de l'Academie des Sciences, Vol. 72, pp. 755-59, 1871.
6.Chambarel, J., Kharif, C. and Touboul, J., “Head-on collision of two solitary waves and residual falling jet formation.” Nonlin Processes Geophys, Vol. 16, pp. 111-122, 2009.
7.Chang, K. A., Hsu, T. J. and Liu, P. L.-F., “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, part I. solitary waves.” Coastal Engng, Vol. 44, pp. 13–36, 2001.
8.Cho, Y.-S., “Numerical Simulations of Tsunami Propagation and Run-up.” (PhD thesis), Cornell University, N.Y., USA, 1995.
9.Cooker, M.J., Weidman, P.D. and Bale, D.S. “Reflection of a high-amplitude solitary wave at a vertical wall.” Journal of Fluid Mechanics, Vol. 342, pp. 141-158, 1997.
10.Craig, W., Guyenne, P., Hammack, J., Henderson, D. and Sulem, C., “Solitary water wave interactions.” Phys. Fluids, Vol. 18, 057106, 2006.
11.Synolakis, C.E., “The Runup of Solitary Waves.” Journal of Fluid Mechanics, Vol. 185, pp. 523-545, 1987.
12.Hirt, C.W. and Nichols, B.D., “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of Computational Physics, Vol. 39, Issue 1, pp. 201-225, 1981.
13.Goring, D.G., “Tsunami: The propagation of long waves on a shelf.” report KH-R- 38, MKeck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, CA, 1978.
14.Fernando, H.J.S., Samarawickrama, S.P., Balasubramanian, S., Hettiarachchi, S.S.L., Voropayev, S., “Effects of porous barriers such as coral reefs on coastal wave propagation.” J. Hydro-environ. Res. 1 (3–4), pp. 187–194, 2008.
15.Fenton, J.D., “A ninth-order solution for the solitary wave.” Journal of Fluid Mechanics, Vol. 53, 257-271,1972
16.Fenton, J.D. and Rienecker, M., “Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions.” Journal of Fluid Mechanics, Vol. 118, pp. 411–443, 1982.
17.Grimshaw, R., “The solitary wave in water of variable depth. Part 2.” Journal of Fluid Mechanics, Vol. 46, pp. 611-622, 1971.
18.Hammack, J., Henderson, D., Guyenne, P. and Ming, Y., “Solitary–wave collisions.” In Proc. 23rd International Conference on Offshore Mechanics and Arctic Engineering, 2004.
19.Hirota, R., “Exact solution of the Korteweg-deVries equation for multiple collisions of solitons.” Phys. Rev. Lett.27, pp.1192-1194, 1971.
20.Huang, Z. and Yuan, Z., “Transmission of solitary waves through slotted barriers: a laboratory study with analysis by a long wave approximation.” J .Hydro-environ. Res. 3 (4), pp. 179–185, 2010.
21.Touboul, J. and Pelinovsky, E., “Bottom pressure distribution under a solitonic wave reflecting on a vertical wall.” Journal of Mechanics B/Fluids, Vol. 48, pp. 13-18, 2014.
22.Korteweg, D.J. and De Vries, G., “ On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves.” Phil. Mag., Vol. 39, pp. 422–443, 1895.
23.Kothe, O.B., Mjolness, R.C. and Torrey, M.D., “RIPPLE: A computer program for incompressible flows with free surface.” Tech.Rep.Rep.96-5,Los Alamos National Laboratory, 1991.
24.Laitone, E.V., “The second approximationto cnoidal and solitary waves.” Journal of Fluid Mechanics, Vol. 9, pp. 430-444, 1960.
25.Lin, P. and Liu, P.L.-F., “A numerical study of breaking waves in the surf zone.” Journal of Fluid Mechanics, Vol. 359, pp. 239–264, 1998.
26.Liu, P.L.-F. and Khaled Al-Banaa, “Solitary wave runup and force on a vertical barrier.” Journal of Fluid Mechanics, Vol. 505, pp. 225–233, 2004.
27.Liu, P. L.-F. and Lin, P., “A numerical model for breaking wave: the volume of fluid method.” Research Rep, CACR-97-02, Center for Applied Coastal Research, Ocean Eng. Lab., Univ. of Delaware, Newark, Delaware 19716, 1997.
28.Maxworthy, T., “Experiments on collisions between solitary waves.” Journal of Fluid Mechanics, Vol. 76, pp177-185, 1976.
29.McCowan, J., “On the solitary wave.” Phil. Mag. 32 (5), pp. 45-68, 1891.
30.McCowan, J., “On the highest wave of permanent type.” Phil. Mag. 38 (5), pp. 351-358, 1894.
31.Mei, C.C., “The Applied Dynamics of Ocean Surface Waves.” World Scientific, pp. 740, 1983.
32.Miles, J.W., “Kelvin waves on oceanic boundaries.” Journal of Fluid Mechanics, Vol. 55, pp113-127, 1972.
33.Miles, J.W., “Solitary Waves.” Annual Review of Fluid Mechanics, Vol. 12, pp. 11-43, 1980.
34.Tanaka, M., “The stability of solitary waves.” Phys. Fluids, Vol. 29, pp. 650–655, 1986.
35.Oikawa, M. and Yajima, N., “Interactions of solitary waves - a perturbation approach to nonlinear systems.” J. Phys. Soc. Japan, Vol. 34, pp. 1093–1099, 1973.
36.Chan, R. K.-C. and Street, R., “A computer study of finite amplitude water waves.” J. Comput. Phys., Vol. 6, pp. 68, 1970.
37.Ramsden, J.D., “Tsunamis: forces on a vertical wall caused by long waves, bores, and surges on a dry bed.” Report No. KH-R-54, W. M. Keck Laboratory, California Institute of Technology, Pasdena, Calif., 1993.
38. Rayleigh, L., “On waves.” Phil. Mag.1, pp. 257-79, Sci. Pap. 1, pp. 251-71, 1976.
39.Renouard, D., Santos, F. and Temperville, A., “Experimental study of the generation, damping, and reflexion of a solitary wave.” Dyn. Atmos. Oceans, Vol. 9, pp. 341–358, 1985.
40.Russell, J.S., “Report of the Committee on Waves.” Rep. Meet. Brit. Assoc. Adv.Sci., 7th, Liverpool, pp. 417-496, 1834.
41.Schwartz, L.W., “Computer extension and analytic continuation of Stokes’ expansion for gravity waves.” Journal of Fluid Mechanics, Vol. 62, pp. 553–578, 1974.
42.Mirie, S.M. and Su, C. H., “Collision between two solitary waves. Part 2. A numerical study.” Journal of Fluid Mechanics, Vol. 115, pp.475–492, 1982.
43.Mirie, S.M. and Su, C. H., “On head-on collisions between two solitary wave.” Journal of Fluid Mechanics, Vol. 98, pp. 509-525, 1980.
44.Temperville, A., “Interaction of solitary waves in shallow water theory.” Arch. Mech., Vol. 31, 177–184, 1979.
45.Shih, T.H., Hu, J. Z. and Lumley, J.L., “Calculation of wall-bounded complex flows and free shear flows.” International Journal for numerical methods in fluids , Vol. 23, pp. 1133-1144, 1996.
46.Touboul, J. and Kharif, C., “Two-dimensional direct numerical simulations of the dynamics of rogue waves under wind action.” The world Scientific Publishing Co, 2009.
47.Umeyama, M., “In0vestigation of Single and Multiple Solitary Waves Using Superresolution PIV.” J.Waterway, Port, Coastal, OceanEng.,ASCE, pp.304-313, 2013.
48.Umeyama, M., Ishikawa, N. and Kobayashi, R., “High-resolution PIV measurements for rear-end and head-on collisions of two solitary waves.” Proceedings of the 34th International Conference on Coastal Engineering, ASCE, Waves.40 , 2014.
49.吳祚任、馬國鳳“台灣古海嘯之調查與研究Investigation and Research on the Paleo-Tsunami in Taiwan”,國立中央大學,2013。
50.林楚佑“Largrangain 方式下之孤立波特性之研究”,國立中山大學論文,2011。
51.陳陽益、林西川“無窮級數之孤立波解析”,成功大學造船工程學報第10期,pp.47-57,1982。
52.陳陽益“波浪通用模式與最大波之解析”,國立成功大學博士論文,1983。
53.張裕弦“孤立波溯升之研究”,國立成功大學博士論文,2008。
54.楊景涵“孤立波在直立壁上之反射試驗”,國立中山大學論文,2012。
校內:2017-08-01公開