簡易檢索 / 詳目顯示

研究生: 方念主
Fang, Nien-Chu
論文名稱: 多機器人協作策略於三對三中型人形機器人足球賽
Multi-Robot Coordination Strategy for 3 vs. 3 Teen-sized Humanoid Robot Soccer Game
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 95
中文關鍵詞: 人形機器人多機器人協作機器人足球賽
外文關鍵詞: Humanoid Robot, Multi-robot Coordination, Robot Soccer Game
相關次數: 點閱:142下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機器人競賽提供了從事機器人研究者各種測試演算法和系統整合能力與實力的平台。在人形雙足機器人足球賽中,基於「與人類相似」的前提下,具主動偵測能力的感測器均不可使用。機器人須規畫步態,在行進間與踢球時保持平衡,以完成比賽。然而,隨著演算法和整合技術日漸成熟,除了穩定的動作之外,機器人的影像辨識能力、自我定位,以及策略協調合作,將成為新的挑戰。因此,本論文針對RoboCup之三對三中型人形機器人足球賽,提出多機器人協作之策略,主要包含了三個部分: 影像辨識與定位方法、機器人間通訊,以及調度策略。由於比賽場地的邊線、球、球門皆為白色,我們利用場地特徵的輪廓,辨識出特定物件。接著,透過物件在影像中的位置、影像的中心位置,以及攝影機鏡頭在機器人世界座標中的位置,這三點的共線關係,反推出該物件在機器人座標中的位置。在知道機器人絕對位置的狀況下,即可推得該物件的絕對位置。而機器人的位置,是透過機器人身上的慣性測量元件(IMU)所推估而得,機器人的絕對位置會在初進入場地時開始記錄,每次機器人移動後都會利用IMU角度資訊,以及移動距離,更新機器人的位置。每個球員辨識到的資訊,則透過通訊網路統整到主控球員身上,以建立全域地圖,並進行策略調度,根據場上的態勢,決定各球員扮演的角色。各球員則依據命令,移動到目標位置,並執行相對應的動作。本論文依據真實機器人比賽狀況,架設模擬軟體,而模擬比賽的結果顯示所提方法,可讓機器人透過協作策略,取得更多的勝場數。而在人形機器人實驗中,也證實了策略的成果。

    Robot competitions are always good platforms for researchers to test and compete their robot systems and algorithms. For the humanoid robot soccer game, any active sensor are prohibited according to the premise of “human-like”. The robot has to plan gaits and maintain balance during moving or kicking a ball to complete the competition. However, with the progress of robot development, multiple-robot coordination and cooperation becomes more and more important. Therefore, this thesis proposes a multi-robot coordination strategy system concerning 3 vs. 3 teen-sized humanoid robot soccer game. Three main technologies are integrated in the system, including object recognition and self-localization, communication, and coordination strategy. Because the line, ball, and goal posts are colored white, we utilize the contour features to recognize them and calculate their positions in robot coordinate. Hence, suppose the robot position in the world coordinate is known, the position of the line, ball, and goal posts in world coordinate can be determined. We figure out the initial position of the robot and update the position by the value of the Inertial Measurement Unit (IMU) and the estimated movement distance. Every robot transmits its location and his own information to the central control player through a communication network to construct a global map used to generate a suitable strategy and to assign roles. A simulation software is constructed in this thesis according to the characteristics of the real robot player and real competitions. After that, experiments show the strategy is effective on humanoid robots. These results illustrate the efficiency of the proposed coordination strategy, where the robot soccer team with the coordination strategy gets more wins.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LIST OF FIGURES VII LIST OF TABLES XIII CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Related work 2 1.2.1 Image processing and localization 2 1.2.2 Role assignment and objective position decision 3 1.2.3 Action decision 4 1.2.4 The effectiveness evaluation of strategy 5 1.3 3 vs. 3 Humanoid robot soccer scenario 5 1.3.1 The robocup humanoid league 5 1.3.2 The implementation of robot soccer players 7 1.4 Thesis organization 14 CHAPTER 2 LOCALIZATION OF PLAYER, LINE AND OBJECTS 15 2.1 Introduction 15 2.2 Object and player recognition 17 2.2.1 The background filter 18 2.2.2 Line recognition 20 2.2.3 Goalpost recognition 23 2.2.4 Ball recognition 25 2.2.5 Player recognition 26 2.3 Target position derivation 30 2.3.1 Target position derivation method 30 2.3.2 Object and player position derivation 32 2.4 Robot Self-localization 34 2.4.1 Estimation of robot position and orientation 34 2.4.2 Calibration procedure after robot player falling down 36 2.4.3 Calibration through the T-shaped feature 37 2.4.4 Calibration through the goal line feature 43 2.5 Summary 46 CHAPTER 3 TEAM COORDINATION STRATEGY 47 3.1 Introduction 47 3.2 Construction of Global Map 48 3.2.1 Communication networks 48 3.2.2 Integration of local information 50 3.3 Role Assignment 51 3.4 Objectives Selection 52 3.5 Avoidance of Obstacles 58 3.6 Action Selection of Different Roles 60 3.7 Summary 68 CHAPTER 4 SIMULATIONS 69 4.1 Introduction 69 4.2 Simulation Platform Construction 70 4.3 Simulation Results 73 4.3.1 The evaluation standard of different strategies 73 4.3.2 Verification of the proposed strategy 74 4.3.3 Proposed strategy against proposed strategy but unchanging roles 80 4.3.4 Proposed strategy against attacking strategy 80 4.3.5 Proposed strategy against defensing strategy 80 4.3.6 Proposed strategy against trivial strategy 81 4.4 Discussion 81 CHAPTER 5 EXPERIMENTS 85 5.1 Individual action of players 85 5.2 Cooperation among players 88 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 90 6.1 Conclusions 90 6.2 Future works 91 REFERENCES 92 BIOGRAPHY 95

    [1]. RoboCup[Online]. Available:
    https://www.robocuphumanoid.org/
    [2]. Y.-T. Ye, “Design and Implementation of Gait Pattern Generation by Improved Linear Inverted Pendulum Model for Teen-sized Humanoid Robot,” M.S. Thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2015.
    [3]. Industrial computer, PICO880[Online]. Available:
    http://www.axiomtek.com.tw/
    [4]. Webcamera, Logitech C920[Online]. Available:
    http://www.logitech.com/zh-tw/product/hd-pro-webcam-c920?crid=34
    [5]. Inertial measurement unit, x-IMU[Online]. Available:
    http://x-io.co.uk/x-imu/
    [6]. T.-C. Yu, “Design and Implementation of A Human Thinking Based Cognition Learning Algorithm for Humanoid Robots at A Basketball Competition of the FIRA Hurocup,” M.S. Thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2014.
    [7]. A. Gudi, P. D. Kok et al., “Feature Detection and Localization for the Robocup Soccer SPL,” Amsterdam Univ., Amsterdam, Project Rep., Feb. 2013.
    [8]. N. Henderson, S. P. Nicklin et al., “The 2008 NUManoids Team Report,” in RoboCup SPL Team Descriptions, Suzhou, China, 2008.
    [9]. M. Sridharan and P. Stone, “Real-time Vision on A Mobile Robot Platform,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, pp. 2148-2153, 2005.
    [10]. T. Röfer and M. Jüngel, “Fast and Robust Edge-based Localization in the Sony Four-legged Robot League,” RoboCup 2003: Robot Soccer World Cup VII. Lecture Notes in Computer Science, vol. 3020, pp. 262-273, 2004.
    [11]. J. Ashar, D. Claridge et al., “RoboCup Standard Platform League rUNSWift 2010”[Online]. Available: http://www.araa.asn.au/acra/acra2010/papers/pap105s1-file1.pdf
    [12]. R. Sheh and B. Hengst, “A Fast Vision Sensor Model: Matching Edges with NightOwl”[Online], 2004, Available:
    http://www.cse.unsw.edu.au/~bernhardh/MobileMe/Publications_files/2004-NightOwlACRA04_20041115.pdf
    [13]. C.-C. Sun, “Design and Implementation of Obstacle Avoidance and Dribbling Strategy for Humanoid Soccer Robot,” M.S. Thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2010.
    [14]. H. Lu, H. Zhang et al, “Vision-based Ball Recognition for Soccer Robots without Color Classification,” in Proceedings of IEEE International Conference on Information and Automation, Zhuhai, Macau, pp. 916-921, 2009.
    [15]. M. Teutsch, P. Trantelle, and J. Beyerer, “Adaptive real-time image smoothing using local binary patterns and Gaussian filters,” in Proceedings of IEEE International Conference on Image Processing, Melbourne, Australia, pp. 1120-1124, 2013.
    [16]. H. Schulz and S. Behnke, “Utilizing the Structure of Field Lines for Efficient Soccer Robot Localization,” Advanced Robotics, vol. 26, no. 14, pp. 1603-1621, 2012.
    [17]. M. Veloso, M. Bowling, and P. Stone, “The CMUnited-98 Champion Small-robot Team,” Advanced Robotics, vol. 13, no. 1, pp. 753-766, 1999.
    [18]. T. Weigel, J. Gutmann, M. Dietl, A. Kleiner, and B. Nebel, "CS Freiburg: Coordinating Robots for Successful Soccer Playing,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 685-699, 2002.
    [19]. C.-M. Chang, “Design and Implementation of Vision and Strategy System for Humanoid Robot Soccer Competition,” M.S. Thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2009.
    [20]. J. Bruce and M. Veloso, “Safe Multirobot Navigation within Dynamics Constraints,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1398-1411, 2006.
    [21]. K. Hwang, Y. Chen, and C. Lee, “Reinforcement Learning in Strategy Selection for a Coordinated Multirobot System,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 37, no. 6, pp. 1151-1157, 2007.
    [22]. D. Gu and H. Hu, “Integration of Coordination Architecture and Behavior Fuzzy Learning in Quadruped Walking Robots,” IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, vol. 37, no. 4, pp. 670-681, 2007.
    [23]. B. Browning, J. Bruce, M. Bowling, and M. Veloso, “STP: Skills, Tactics, and Plays for Multi-robot Control in Adversarial Environments,” in Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 219, no. 1, pp. 33-52, 2005.
    [24]. T. Laue and T. Röfer, “A Behavior Architecture for Autonomous Mobile Robots Based on Potential Fields,” in RoboCup 2004: Robot Soccer World Cup VIII. Lecture Notes in Computer Science, vol. 3276, pp. 122-133, 2005.
    [25]. D. Ball and G. Wyeth, “Multi-robot Control in Highly Dynamic, Competitive Environments,” in RoboCup 2003: Robot Soccer World Cup VII. Lecture Notes in Computer Science, vol. 3020, pp. 385-396, 2004.
    [26]. T.-K. Wang, “Design and Implementation of Double Passing Strategy for Humanoid Soccer Robot,” M.S. Thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE