簡易檢索 / 詳目顯示

研究生: 王浩任
Wang, Hao-Ren
論文名稱: 應用矽鍺疊層熱電偶設計以提升能源採集器效能之研究
Development of Thermoelectric Energy Generator with Stacked Polysilicon Germanium Thermocouples for Higher Performance
指導教授: 楊世銘
Yang, Shih-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 81
中文關鍵詞: 熱電能源採集器BiCMOS製程疊層設計雙空腔結構
外文關鍵詞: Thermoelectric energy generator chip, BiCMOS process, Stacked thermocouples, Double cavity design
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於無線感測網路與互聯網的應用日益增加,熱電能源採集器可將環境中的熱能轉換為有效電能以提供設備使用,本文提出一個高性能熱電能源採集器晶片,以疊層矽鍺熱電偶和蝕刻窗設計增加其單位面積數量並結合雙空腔設計以增加熱電偶之溫差。堆疊熱電偶是透過兩個熱電層組成並堆疊在矽基板上,蝕刻窗設計是使用三個熱電偶共用一組蝕刻窗使其縮小熱電偶的間距寬度,雙空腔設計是使用感應耦合式離子蝕刻系統和反應式離子蝕刻系統進行蝕刻,並分別蝕刻出上下空腔形成雙空腔設計,本文藉由以上設計提升熱電能源採集器之性能,此熱電能源採集器之元件可整合於 TSMC SiGe18 3P6M BiCMOS製程。透過分析數值模型預測當熱電偶之尺寸為45 μm × 2 μm時,可得熱電能源採集器元件之功率因子0.1004 μW/cm2K2,電壓因子39.04 V/cm2K。此熱電能源採集器晶片之面積為5 mm × 5 mm,分為10個區塊,則其性能可達功率因子0.0847 μW/cm2K2,電壓因子36.19 V/cm2K,結果相較於沒有疊層與蝕刻窗設計之熱電能源採集器,電壓係數提升了約1.54倍。

    Thermoelectric energy generator (TEGs) that can convert temperature differences into electrical energy are indispensable to the development of wireless sensor networks (WSN) and Internet of things (IoT). This thesis proposes a TEG chip with stacked polysilicon germanium thermocouples, etching window design, and double cavity design to increase the number of thermocouples and the harvesting performance. Stacked thermocouples are composed of two thermoelectric layers to stack on the silicon substrate. Etching window design is to change the width of spacing adjacent thermocouples (Ws) by grouping three thermocouples sharing the etching window. Double cavity design is by the post process including the Inductively-Coupled Plasma (ICP) anisotropic etching and Reactive Ion Etcher (RIE) isotropic etching for etching upper cavity and lower cavity. The TEG chip is implemented by the TSMC SiGe18 3P6M BiCMOS process. The numerical analysis of TEG performance shows the size of thermocouple is 45 μm × 2 μm at the width of spacing of 1.067 μm for 0.1004 μW/cm2K2 power factor and 39.04 V/cm2K voltage factor. On a 5 mm × 5 mm TEG chip, the power factor and voltage factor are 0.0847 μW/cm2K2 and 36.19 V/cm2K, which achieve achieving 84% and 93% of the simulation. The voltage factor is 1.54 times of the previous work (Yang et al., 2020).

    Contents Abstract in (Chinese) i Abstract in (English) vii Acknowledgments viii Contents ix List of Tables xi List of Figures xii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thermoelectric Effect 2 1.3 Literature Review 3 1.3.1 TEG applications 3 1.3.2 TEG configuration 4 1.4 Outline 8 Chapter 2 Design of Thermoelectric Energy Generator 12 2.1 Introduction 12 2.2 TEG Design Evolution 12 2.3 TEG Thermocouple Materials 14 2.3.1 Polysilicon (poly-Si) thermocouple 15 2.3.2 Polysilicon germanium (poly-SiGe) thermocouple 18 2.4 Summary 21 Chapter 3 Analysis of Stacked Polysilicon Germanium Thermocouples 29 3.1 Introduction 29 3.2 Thermal Simulation of TEG Model 29 3.3 Numerical Analysis of TEG performance 30 3.4 Etching Window Size 36 3.5 Summary 38 Chapter 4 Design and Performance Measurement of TEG 49 4.1 Introduction 49 4.2 TEG Design by BiCMOS Process (TSMC SiGe18 3P6M) 49 4.3 Post Process 51 4.4 Experimental Result of TEG 52 4.5 Time Schedule of The TEG Chip Implementation 54 4.6 Summary 55 Chapter 5 Summary and Conclusions 73 References 75

    Alabo, A. B., “Performance Evaluation of Ge/SiGe-based Thermoelectric Generator,” Physica E: Low-dimensional Systems and Nanostructures, Vol. 108, pp. 202-205, 2019.
    Allmen, L. V., Bailleul, G., Becker, T., Decotignie, J. D., Kiziroglou, M. E., Leroux, C., Yeatman, E. M., “Aircraft Strain WSN Powered by Heat Storage Harvesting,” IEEE Transactions on Industrial Electronics, Vol. 64, Issue. 9, pp. 7284-7292, 2017.
    Boutchich, M., Ziouche, K., Godts, P., Leclercq, D., “Characterization of Phosphorus and Boron Heavily Doped LPCVD Polysilicon Films in the Temperature,” IEEE Electron Device Letters, Vol. 23, No. 3, pp. 139-141, 2002.
    Cao, Z., Tudor, M. J., Torah, R. N., Beeby, S. P., “Screen Printable Flexible BiTe–SbTe-Based Composite Thermoelectric Materials on Textiles for Wearable Applications,” IEEE Transactions on Electron Devices, Vol. 63, pp. 4024-4030, 2016.
    Chen, A., Madan, D., Wright, P. K., Evans, J. W., “Dispenser-printed Planar Thick-film Thermoelectric Energy Generators,” Journal of Micromechanics and Microengineering, Vol. 21, 104006, 2011.
    Chen, M. D., Wang, J. Y., Yang, S. M., Tsai, M.H., “Structural Design for Dimensional Stability of Thermocouples in Thermoelectric Energy Harvester,” IEEE Sensors Journal, Vol. 19, pp. 58-64, 2019.
    Dai, C. L., Yang, M. Z., Peng, S. W., “An Energy Harvesting Device Manufactured Using the Commercial 0.18 µm CMOS Process,” IEEE Xplore, Vol. 31, pp. 128-131, 2013.
    Datta, U., Dessouky, S., Papagiannakis, A. T., “Harvesting Thermoelectric Energy from Asphalt Pavements” Transportation Research Record, Vol. 2628, Issue.1, pp. 12-22, 2017.
    Dos Santos, A. D., de Brito, S. C., Martins, A. V., Silva., F. F., Morais, F., “Thermoelectric Energy Harvesting on Rotation Machines for Wireless Sensor Network in Industry 4.0,” 14th IEEE International Conference on Industry Applications, 2021, pp. 694-697, doi: 10.1109/INDUSCON51756.2021.9529630, 2021.
    Fitzgerald, P., Berney, H., Lakshmanan, R., Coburn, N., Geary, S., Mulvey, B., “Devices and Sensors Applicable to 5G System Implementations,” IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies, pp. 1-3, 2018.
    Glatz, W., Schwyter, E., Durrer, L., and Hierold, C., “Bi2Te3-Based Flexible Micro Thermoelectric Generator with Optimized Design,” Journal of Microelectromechanical Systems, Vol. 18, pp. 763-772, 2009.
    Hicks, L. D., Dresselhaus, M. S., “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Physical Review B, Vol. 47, Iss. 19, pp. 12727-12731, 1993.
    Ji, S. Liao, X., “Researches on MEMS Thermoelectric-photoelectric Integrated Energy Harvester with Metal Heat Sink,” Microelectronics Journal, Vol. 96, 104702, 2020.
    Jung, Y. S., Jeonga, D. H., Kanga, S. B., Kima, F., Jeonga, M. H., Leea, K. S., Sona, J. S., Baika, J. M., Kimb, J. S., Choia, K. J., “Wearable Solar Thermoelectric Generator Driven by Unprecedentedly High Temperature Difference,” Nano Energy, Vol. 40, pp. 663-72, 2017.
    Kao, P. H., Shih, P. J., Dai, C. L., Kiu, M. C., “Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generator,” Sensors, Vol. 10, pp. 1315-1325, 2010.
    Kim, S. J., Lee, H. E., Choi, H., Kim, Y., We, J. H., Shin, J. S., Lee, K. J., Cho, B. J., “High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process,” ACS Nano, Vol. 10, pp.10851-57, 2016.
    Leonov, V., “Simulation of Maximum Power in the Wearable Thermoelectric Generator with a Small Thermopile,” Microsystem technologies, Vol.17, pp. 495-504, 2011.
    Lineykin, S., Sitbon, M., Kuperman, A., “Design And Optimization of Low-Temperature Gradient Thermoelectric Harvester for Wireless Sensor Network Node on Water Pipelines” Applied Energy, Vol. 283, No. 1, doi:10.1016/j.apenergy.2020.116240, 2020.
    Lin, Q., Chen, Y. C., Chen, F., DeGanyar, T., Yin, H., “Design and Experiments of a Thermoelectric-Powered Wireless Sensor Network Platform for Smart Building Envelope,” Applied Energy, Vol. 305, doi: 10.1016/j.apenergy.2021.117791 , 2022.
    Liu, X., Deng, Y. D., Zhang, K., Xu, M., Xu, Y., Su, C. Q., “Experiments and Simulations on Heat Exchangers in Thermoelectric Generator for Automotive Application,” Applied Thermal Engineering, Vol. 71, pp.364-70, 2014.
    Li, Y., Buddharaju, K., Singh, N., Lo, G., Lee, S., “Chip-level Thermoelectric Power Generators Based on High-density Silicon Nanowire Array Prepared with Top-down CMOS Technology,” IEEE Electron Device Letters, Vol. 32, pp. 674-676, 2011.
    Li, Y., Buddharaju, K., Tinh, B. C., Singh, N., Lee, E. J., “Improved Vertical Silicon Nanowire Based Thermoelectric Power Generator with Polyimide Filling,” IEEE Electron Device Letters, Vol. 33, pp. 715-717, 2012.
    Lu, Z., Zhang, H., Mao, C., Li, C. M., “Silk Fabric-based Wearable Thermoelectric Generator for Energy Harvesting from the Human Body,” Applied Energy, Vol. 164, pp. 57-63, 2016.
    Mohsen, S., Zekry, A., Youssef, K., Abouelatta, M., “A Self-Powered Wearable Wireless Sensor System Powered by a Hybrid Energy Harvester for Healthcare Applications,” Wireless Personal Communications, Vol. 116, pp. 3143-3164, 2021.
    Odia, A., L. Llin, F., Paul, D. J., “Modelling and Experimental Verification of a Ge/SiGe Thermoelectric Generator,” IEEE Xplore, Vol. 11, pp.254-257, 2015.
    Orr, B., Akbarzadeh, A., Lappas, P., “an Exhaust Heat Recovery System Utilising Thermoelectric Generators and Heat Pipes,” Applied Thermal Engineering, Vol. 126, pp.1185-90, 2017.
    Peng, S. W., Shih, P. J., Dai, C. L., “Manufacturing and Characterization of a Thermoelectric Energy Harvester Using the CMOS-MEMS Technology,” Micromachines, Vol. 6, pp. 1560-1568, 2015
    Pereira, A., Caroff, T., Lorin, G., Baffie, T., Romanjek, K., Vesin, S., Kusiaku, K., Duchemin, H., Salvador, V., Ali, N. M., Aixala, L., Simon, J., “High Temperature Solar Thermoelectric Generator-Indoor Characterization Method and Modeling,” Energy, Vol. 84, pp. 485-92, 2015.
    Ramadhan, E., Hakim, G. P., Hajar, M. H. I., Firdausi, A., “Soil Energy Harvesting and Its Review on WSN Node Operation,” IEEE International Symposium on Electronics and Smart Devices, pp. 1-6, 2021.
    Roth, R., Rostek, R., Cobry, K., Kohler, C., Groh, M., Woias, P., “Design and Characterization of Micro Thermoelectric Cross-Plane Generators with Electroplated Bi2Te3, SbxTey, and Reflow Soldering,” Journal of Microelectromechanical Systems, Vol. 23, pp. 961-971, 2014.
    Samarelli, A. Llin, L. F., Cecchi, S., Frigerio, J., Chrastina, D., Isella, G., Gubler, E. M., Etzelstorfer, T., Stangl, J., Zhang, Y., Weaver, J. M. R., Dobson, P. S., Paul, D. J., “Prospects for SiGe Thermoelectric Generators,” Solid-State Electronics, Vol. 98, pp. 70-74, 2014.
    Samarelli, A., Llin, L. F., Cecchi, S., Frigerio, J., Etzelstorfer, T., Muller, E., Zhang, Y., Watling, J. R., Chrastina, D., Isella, G., Stangl, J., Hague, J. P., Weaver, J. M. R., Dobson, P., Paul, D. J., “The Thermoelectric Properties of Ge/SiGe Modulation Doped Superlattices,” Journal of Applied Physics, Vol. 113, 2013.
    Shen, T. W., Chang, K. C., Sun, C. M., Fang, W., “Performance Enhance of CMOS-MEMS Thermoelectric Infrared Sensor by Using Sensing Material and Structure Design,” Journal of Micromechanics and Microengineering, Vol. 29, No. 2, 2019.
    Strasser, M., Aigner, R., Lauterbach, C., Sturm, T. F., Franosch, M., Wachutka, G., “Micromachined CMOS Thermoelectric Generators as On-chip Power Supply,” Sensors and Actuators: A. Physical, Vol. 114, pp. 362-370, 2004.
    Su, J., Leonov, V., Goedbloed, M., van Andel, Y., de Nooijer, M. C., Elfrink, R., Wang, Z., Vullers, R. J. M., “A Batch Process Micromachined Thermoelectric Energy Harvester: Fabrication and Characterization,” Journal of Micromechanics and Microengineering, Vol. 20, 104005, 2010.
    Temizer, I., Ilkılıç, C., “the Performance and Analysis of the Thermoelectric Generator System used in Diesel Engines,” Renewable and Sustainable Energy Reviews, Vol. 63, pp. 141-51, 2016.
    Wang, W., Ji, Y., Xu, H., Li, H., Visan, T., Golgovici, F., “A High Packing Density Micro-Thermoelectric Power Generator based on Film Thermoelectric Materials Fabricated by Electrodeposition Technology,” Surface & Coatings Technology, Vol. 231, pp.583-89, 2013.
    Wojtas, N., Schwyter, E., Glatz, W., Kühnea, S., Escher, W., Hierolda, C., “Power Enhancement of Micro Thermoelectric Generators by Microfluidic Heat Transfer Packaging,” Sensors and Actuators: A. Physical, Vol. 188, pp. 389-95, 2012.
    Xie, J., Lee, C., Feng, H., “Design, Fabrication, and Characterization of CMOS MEMS-based Thermoelectric Power Generators,” Journal of Microelectromechanical Systems, Vol. 19, Iss. 2, pp. 317-324, 2010.
    Yang, S. M., Chung, L. A., “A Thermoelectric Energy Generator with Double Cavity Design by Single Polysilicon Layer in Standard CMOS Process,” IEEE Sensors Journal, Vol. 21, pp 23799-23805, 2021.
    Yang, S. M., Cong, M., Lee, T., “Application of Quantum Well-Like Thermocouple to Thermoelectric Energy Harvester by BiCMOS Process,” Sensors and Actuators A: Physical, Vol. 166, pp. 117-124, 2011.
    Yang, S. M., Lee, T., Cong, M., “Design and Verification of a Thermoelectric Energy Harvester with Stacked Polysilicon Thermocouples by CMOS Process,” Sensors and Actuators A: Physical, Vol. 157, pp. 258-66, 2010.
    Yang, S. M., Lee, T., Jeng, C. A., “Development of a Thermoelectric Energy Harvester with Thermal Isolation Cavity by Standard CMOS Process,” Sensors and Actuators A: Physical, Vol. 153, pp. 244-250, 2009.
    Yang, S. M., Wang, J. Y., Chen, M. D., “On the Improved Performance of Thermoelectric Generators with Low Dimensional Polysilicon-Germanium Thermocouples by BiCMOS Process,” Sensors and Actuators A: Physical, Vol. 306, No. 1, doi: 10.1016/j.sna.2020.111924, 2020.
    Yang, S. M., Wang, S. H., “Development of a Thermoelectric Energy Generator with Double Cavity by Standard CMOS Process,” IEEE Sensors Journal, Vol. 21, Issue. 1, pp. 250-256, 2021.
    Yan, J. B., Liao, X., “A Novel Multi-Source Micro Power Generator for Harvesting Thermal and Optical Energy,” IEEE Electron Device Letters, Vol. 40, No. 2, pp. 349-352, 2019.
    Yuan, Z., Tang, X., Xu, Z., Li, J., Chen, W., Liu, K., Liu, Y., Zhang, Z., “Screen-Printed Radial Structure Micro Radioisotope Thermoelectric Generator,” Applied Energy, Vol. 225, pp. 746-54, 2018.
    Yu, X., Wang, Y., Liu, Y., Li, T., Zhou, H., Gao, X., Wang, Y., “CMOS MEMS-Based Thermoelectric Generator with an Efficient Heat Dissipation Path,” Journal of Micromechanics and Microengineering, Vol. 22, No. 10, 2012.
    Zhang, S., Liao, X., “The Thermoelectric-photoelectric Integrated Power Generator and its Design Verification,” Solid State Electronics, Vol. 170, 107818, 2020.
    Ziouche, K., Yuan, Z., Lejeune, P., Lasri, T., Leclercq, D., Bougrioua, Z., “Silicon-Based Monolithic Planar Micro Thermoelectric Generator Using Bonding Technology,” Journal of Microelectromechanical Systems, Vol. 26, pp. 45-47, 2017.

    下載圖示 校內:2025-08-17公開
    校外:2025-08-17公開
    QR CODE