| 研究生: |
簡偉翔 Jian, Wei-Xiang |
|---|---|
| 論文名稱: |
適用於未知系統並具有輸入限制的軌跡追蹤器: 基於觀測器的改良型模型預測控制法 A New Input Constrained Tracker for an Unknown Sampled-Data System: Modified Observer-Based Model Predictive Control Approach |
| 指導教授: |
蔡聖鴻
Tsai, S. H. Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 輸入飽和限制 、數位重新設計 、觀測器/卡爾曼濾波器鑑別方法 、模型預測控制 |
| 外文關鍵詞: | Input constraint, digital redesign, observer/Kalman filter identification, model predictive control |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出一個適用於含直接傳輸項之未知線性系統並具有輸入限制功能的模型預測控制軌跡追蹤器。首先利用離線的觀測器/卡爾曼濾波器鑑別方法計算出具有直接傳輸項之資料取樣模型的適當階數(或低階)的線性觀測器。此外,採用具有預估之數位重新設計方法將具有高增益類比觀測器與追蹤器轉換得到一低增益且可執行的數位觀測與追蹤器。為了降低控制力來滿足輸入飽和限制,提出修正型模型預測控制的軌跡追蹤器,可滿足輸入飽和的限制,並且在具有輸入飽和限制時具有高增益的特性。
This thesis proposes a modified observer-based model predictive control tracker for linear unknown system with a direct transmission term and input constraint. First, the observer/Kalman filter identification(OKID) is used to identify the unknown and linear system with a transmission term into the equivalent mathematical model containing a transmission term. This identified model is used for the design of the controller and observer. Besides, the prediction-based digital redesign method is utilized to obtain a relatively low-gain and implementable observer and digital tracker from the theoretically well-designed high-gain analogue observer and tracker. The proposed modified observer-based model predictive control not only reduces the control input to fit the requirement of the input constraint, but also possesses the high-gain property of controlled system.
[1]Graham, C. G., Stefan, F. G., and Mario, E. S., Control System Design. Prentice Hall, New Jersey, 2000.
[2]Hildreth, C., “A quadratic programming procedure,” Naval Research Logistics Quarterly vol. 4, pp. 79-85, 1957.
[3]Ho, B. L. and Kalman, R. E., “Effective construction of linear state-variable models from input-output data,” Proceedings of the 3rd Annual Allerton Conference on Circuits and System Theory, Monticello, IL: University of Illinois, pp. 449-459, 1965.
[4]Hu, T., Teel, A. R., and Zaccarian, L., “Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance,” Automatica, vol. 44(2), pp. 512-519, 2008.
[5]Juang , J. N., Applied System Identification, Prentice Hall, New Jersey, 1994.
[6]Kuo, B. C., Digital Control Systems, New York, 1980.
[7]Ogata, K., Discrete-time Control Systems, Prentice-Hall, Englewood Cliffs, N.J., 1987.
[8]Solmaz, S. K. and Faryar, J., “Modified anti-windup compensators for stable plants,” IEEE Transactions on Automatic Control, vol. 54, pp. 1934-1939, 2009.
[9]Shieh, L. S., Zho, X. M., and Zhang, J. L., “Locally optimal-digital redesign of continuous-time systems,” IEEE Transactions Automatic Control, vol. 36, pp. 511-515, 1989.
[10]Tsai, J. S. H., Shieh, L. S., Zhang, J. L., and Coleman, N. P., “Digital redesign of pseudo continuous-time suboptimal regulators for large-scale discrete systems,” Control Theory Advance Technology, vol. 5, pp. 37-65, 1989.
[11]Tiwari, P. Y., Mulder, E. F., and Kothare, M. V., “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52(12), pp. 2341-2345, 2007.
[12]Wu, F. and Lu, B., “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems & Control Letters, vol. 52(4), pp. 305-322, 2004.
[13]Wang, L. P., Model Predictive Control System Design and Implementation using MATLAB. Springer, London, 2009.
[14]Wang, P. H., Digital-Redesign Tracker for Unknown System with a Direct Feed-Through Term and Constraints: An Adaptive Mechanism for Tuning Weighting Matrices, Master Thesis, National Cheng Kung University, 2014.
[15]Zaccarian, L. and Teel, A. R., “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49(11), pp. 2055-2061, 2004.
校內:2020-07-29公開