研究生: |
梁東雄 Liang, Dong-Shong |
---|---|
論文名稱: |
負微分電阻電路的研究與設計 Research and Design of NDR Circuits |
指導教授: |
甘廣宙
Gan, Kwang-Jow 戴政祺 Tai, Cheng-Chi |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 負微分電阻 、除頻器 、混沌 、多值記憶器 |
外文關鍵詞: | logic gate, chaos, negative differential resistance, frequency divider, multiple-valued memory |
相關次數: | 點閱:60 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上所謂的負微分電阻電路,指的是共振穿透二極體(RTD),它們主要是由Ⅲ-Ⅴ族複合半導體所構成,它們並不適合現在主流的CMOS或BiCMOS製程。然而在本論文所提出的新型負微分電阻電路有MOS-HBT-NDR,MOS-NDR 及R-HBT-NDR,這些負微分電阻電路除了擁有與RTD相同具有折疊的I-V特性曲線外,它們又具有高可調制的特點,尤其是它們符合現在的主流製程,它們能很容易的可以與其它的應用電路整合在一個晶片上,使系統在同一晶片上(SoC)成為可能。
雙峰值的MOS-HBT-NDR 電路擁有較佳的峰-谷電流比(PVCR),及比RTD更寬的可調變的I-V特性曲線,我們在這個論文裡新研製了一個非常高的PVCR電路,並利用它以不同的負載方式來設計多值記憶器。我們又利用單穩態-雙穩態傳輸邏輯閘(MOBILE)理論,用新型的MOS-NDR電路來實作多功能邏輯閘,最後我們以新型的R-HBT-NDR電路來實作一個以NDR為基礎的混沌電路,並分別改變輸入頻率,輸入振幅及輸入偏壓來設計間夾有混沌效果的除頻器。
Most of the previously published negative-differential-resistance circuits (NDR) are implemented by the resonant tunneling diode (RTD). These devices and circuits are Ⅲ-Ⅴ compound semiconductors, which are not compatible with the main stream of Si-based CMOS or SiGe-based BiCMOS process.
In this thesis, We propose three new types NDR circuits, which are MOS-HBT-NDR, MOS-NDR and R-HBT-NDR. These NDR circuits not only have fold feature but also high modulation in I-V characteristic. However, these NDR circuit is completed of the Si-based MOS and SiGe-based HBT devices, it is convenient to combine with other devices and circuits to achieve the system-on a-chip (SoC).
Compared to the traditional RTD-based multiple-peak circuit, our novel
two-peak MOS-HBT-NDR owns high and adjustable PVCR characteristic. These phenomena provide flexible applications in multiple-valued memory design. We have demonstrated several methods to output the logic levels as we need.
We have fabricated the MOS-NDR circuits based on the standard 0.35 m CMOS process. We also have demonstrated the Multi-Function logic gate based on the MOS-NDR circuits. This circuit of logic gate design is operated according to the principle of MOBILE theory.
We have proposed a novel frequency divider using an NDR-based chaos circuit. This chaos circuit is based on the strong nonlinearity of an R-HBT-NDR circuit. We have researched the operation of the frequency divider circuit with respect to the input frequency, the bias voltage, input amplitude, and various input waveforms on the operation. A higher operation frequency is expected for this type of frequency divider.
[1]K. J. Chen, K. Maezawa, and M. Yamamoto, “InP-based high-performance monostable-bistable transition logic elements (MOBILE’s) using integrated multiple-input resonant-tunneling devices,” IEEE Electron Device Letters, vol.17, pp. 127-129, 1996.
[2]M. J. Avedillo, J. M. Quintana, and H. Pettenghi, “Self-latching operation of MOBILE circuits using series-connection of RTDs and transistors,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 53, pp. 334-338, 2006.
[3]S. Choi, B. Lee, T. Kim, and K. Yang, “CML-type monostable bistable logic element (MOBILE) using InP-based monolithic RTD/HBT technology,” Electronics Letters, vol. 40, pp. 792-793, 2004.
[4]A. C. Seabaugh, Y. C. Kao, and H. T. Yuan, “Nine-state resonant tunneling diode memory,” IEEE Electron Device Letters, vol. 13, pp. 479-481, 1992.
[5]Z. X. Yan and M. J. Deen, “A new resonant-tunnel diode-based multivalued memory circuit using a MESFET depletion load,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1198-1202, 1992.
[6]D. Akinwande and H. S. Wong, “A composite circuit model for NDR devices in random access memory cells,” IEEE Transactions on Electron Devices, vol. 54, pp. 776-783, 2007.
[7]N. Jin, S. Y. Chung, R. M. Heyns, P. R. Berger, R. Yu, P. E. Thompson, and S. L. Rommel, “Tri-state logic using vertically integrated Si-SiGe resonant interband tunneling diodes with double NDR,” IEEE Electron Device Letters, vol. 25, pp. 646-648, 2004.
[8]N. Orihashi, S. Hattori, and M. Asada, “Millimeter and submillimeter oscillators using resonant tunneling diodes with stacked-layer alot antennas,” Japanese Journal of Applied Physics, vol. 43, pp. L1309-L1311, 2004.
[9]Y. Tsuji and T. Waho, “Multiple-input resonant-tunneling logic gates for flash A/D converter applications,” Proceedings of 34th international symposium on Multiple-Valued Logic, pp. 8-13, 2004.
[10]T. Kim, Y. Jeong, and K. Yang, “Low-power static frequency divider using an InP-based monolithic RTD/HBT technology,” Electronics Letters, vol. 42, pp. 27-29, 2006.
[11]J. M. Quintana and M. J. Avedillo, “Nonlinear dynamics in frequency divider RTD circuits,” Electronics Letters, vol. 40, pp. 586-587, 2004.
[12]K. Sano, K. Murata, T. Otsuji, T. Akeyoshi, N. Shimizu, and E. Sano, “An 80-Gb/s optoelectronic delayed flip-flop IC using resonant tunneling diodes and uni-traveling-carrier photodiode,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 281-289, 2001.
[13]T. Uemura and T. Baba, “A three-valued D-flip-flop and shift register using multiple-junction surface tunnel transistors,” IEEE Transactions on Electron Devices, vol. 49, pp. 1336-1340, 2002.
[14]K. Maezawa, M. Sakou, W. Matsubara, and T. Mizutani, “Resonant tunnelling delta sigma modulator suitable for high-speed operation,” Electronics Letters, vol. 42, pp. 77-78, 2006.
[15]S. Sudirgo, R. P. Nandgaonkar, B. Curanovic, J. L. Hebding, R. L. Saxer, S. S. Islam, K. D. Hirschman, S. L. Rommel, S. K. Kurinec, P. E. Thompson, N. Jin, and P. R. Berger, “Monolithically integrated Si/SiGe resonant interband tunnel diode/CMOS demonstrating low voltage MOBILE operation,” Solid State Electronics, vol. 48, pp. 1907-1910, 2004.
[16]N. Jin, S. Y. Chung, R. Yu, R.M. Heyns, P. R. Berger, and P. E. Thompson, “The effect of spacer thicknesses on Si-based resonant interband tunneling diode performance and their application to low-power tunneling diode SRAM circuits,” IEEE Transactions on Electron Devices, vol. 53, pp. 2243-2249, 2006.
[17]S. Sen, F. Capasso, A. Y. Cho, and D. Sivco,“Resonant tunneling device with multiple negative differential resistance: digital and signal processing applications with reduced circuit complexity,”IEEE Transactions on Electron Devices, vol. 34, pp. 2185-2191, 1987
[18]K. Maezawa, H. Matsuzaki, M. Yamamoto, and T. Otsuji, “High-speed and low-power operation of a resonant tunneling logic gate MOBILE,” IEEE Electron Device Letters, vol. 19, pp. 80-82, 1998.
[19]L. O. Chua, J. Yu, and Y. Yu, “Bipolar-JFET-MOSFET negative resistance devices,” IEEE Transactions on Circuits and Systems, vol. 32, No. 1, pp. 46-61, 1985.
[20]A. F. Gonzalez, M. Bhattacharya, S. Kulkarni, and P. Mazumder, “CMOS implementation of a multiple-valued logic signed-digit full adder based on negative-differentiaI-resistance devices,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 924-932, 2001.
[21]C. Y. Wu and K. N. Lai, “Integrated Λ-type differential negative resistance MOSFET device,” IEEE Journal of Solid-State Circuits, vol. 14, pp. 1094-1101, 1979.
[22]K. J. Gan, Y. K. Su, and R. L. Wang,“Simulation and analysis of negative differential resistance devices and circuits by load-line method and Pspice,”Solid State Electronics, vol. 42, pp. 176-180, 1998.
[23]T. Waho, K. J. Chen, and M. Yamamoto, “Resonant-tunneling diode and HEMT logic circuits with multiple threshold and multilevel output,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 268-274, 1998.
[24]A. C. Seabaugh, Y. C. Kao, and H. T. Yuan, “Nine-state resonant tunneling diode memory,” IEEE Electron Device Letters, vol. 13, pp. 479-481, 1992.
[25]S. Y. Chung, N. Jin, and P. R. Berger, R. Yu, P. E. Thompson, R. Lake, S. L. Rommel and S. K. Kurinec, “3-terminal Si-based negative differential resistance circuit element with adjustable peak-to-valley current ratios using a monolithic vertical integration,” Applied Physics Letters, vol. 84, pp. 2688-2690, 2004.
[26]K. J. Gan “Characterization of the extrinsic hysteresis phenomena of series-connected Esaki-diode-like NDR devices,” Japanese Journal of Applied Physics, vol. 41, pp. 1293-1299, 2002.
[27]K. J. Gan, D. S. Liang, C. S. Tsai, I. S. Lai, and P. K. Huang, “Simulation and analysis of the series circuit of tunneling –diode-like device by the computer aided design,” The 16th Technological and Vocational Education, Taiwan, R.O.C., April, 2001, pp. 49-58.
[28]S. J. Wei and H. C. Lin, “Multivalued SRAM cell using resonant tunneling diodes,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 212-216, 1992.
[29]K. J. Gan, Y. H. Chen, C. S. Tsai, and L. X. Su, “Four-valued memory circuit using three-peak MOS-NDR circuits and circuits,” Electronic Letters, vol. 42, pp. 21-22, 2006.
[30]P. Mazumder, S. Kulkarni, M. Bhattachaya, J. P. Sun, and G. I. Haddad, “Digital circuit applications of resonant tunneling devices,” Proceedings of the IEEE, vol. 86, pp. 664-686.,1998,
[31]S. Sen, F. Capasso, A. Y. Cho, and D. Sivco, “Resonant tunneling device with multiple negative differential resistance: digital and signal processing applications with reduced circuit complexity,” IEEE Transactions on Electron Devices, vol. 34, pp. 2185-2191, 1987.
[32]K. J. Chen, K. Maezawa, and M. Yamamoto, “InP-based high-performance monostable-bistable transition logic elements (MOBILE's) using integrated multiple-input resonant-tunneling devices,” IEEE Electron Device Letters, vol. 17, pp. 127-129, 1996.
[33]H. Matsuzaki, T. Itoh, and M. Yamamoto, “A Novel High-Speed flip-flop circuit using RTDs and HEMTs,” IEEE Proceedings of the Ninth Great Lakes Symposium on VLSI, pp. 154-157, 1999.
[34]K. Maezawa, H. Matsuzaki, M. Yamamoto, and T. Otsuji, ”High-speed and low-power operation of a resonant tunneling logic gate MOBILE,” IEEE Electron Device Letters, vol. 19, pp. 80-82, 1998.
[35]Y. Kawano, S. Kishimoto, K. Maezawa, and T. Mizutani, “Robust operation of a novel frequency divider using resonant tunneling chaos circuit,” Japanese Journal of Applied Physics, vol. 39, pp. 3334-3338, 2000.
[36].Y. Kawano, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, “50 GHz frequency divider using resonant tunneling chaos circuit,” Electronics Letters, vol. 38, pp. 305-306, 2002.