簡易檢索 / 詳目顯示

研究生: 盧冠行
Lu, Kuan-Hsing
論文名稱: 基於深度圖邊界之快速3DVC編碼演算法
Depth Edge-Based Fast 3DVC Encoding Algorithms
指導教授: 劉濱達
Liu, Bin-Da
楊家輝
Yang, Jar-Ferr
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 81
中文關鍵詞: 3D-HEVC邊界資訊方塊大小決定搜索範圍縮小
外文關鍵詞: 3D-HEVC, edge information, unit size decision, search range reduction
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3D-HEVC是3D影像壓縮最新的標準,其基本架構與HEVC相似。本論文著重在降低幀間搜索的計算量,並提出採用邊界資訊輔助移動搜尋,以提升其搜尋效率之演算法。透過深度圖前處理,邊界資訊被標記下來並且儲存於深度圖之彩度分量中,且使用於移動搜尋的過程中。在不影響影像品質的前提下,本演算法可以節省3D-HEVC之中,預測單元及編碼單元之尺寸決定過程的運算複雜度,進而增進其編碼效能。另外,本論文亦使用邊界資訊針對當前方塊是否在物件內部進行判斷,若當前方塊位於物件內部時,本演算法將縮小移動估測的搜尋範圍,進而減少移動估測所需時間,並且重建出品質優良的影像。
    本論文將所提出之邊界資訊輔助移動搜尋演算法實現於3D-HTM 5.0中,根據模擬結果,在不同的量化參數以及各種測試樣本中,本演算法皆可節省約78%的幀間搜尋之運算量,整體壓縮時間平均下降60%。在壓縮效率方面,位元率平均增加0.9%,而PSNR僅下降0.05 dB,為人眼所能接受之範圍;換言之,本論文所提出之邊界資訊輔助移動搜尋演算法,能在影像效果幾乎沒有衰減之下,有效提升3D-HEVC之編碼效率。

    The 3D-HEVC is the newest standard for high resolution 3D video coding. Similar to the high efficient video coding, the 3D-HEVC improves the compression efficiency for high resolution 3D sequences. This thesis focuses on the computational complexity reduction in inter prediction. During coding process, a new format of depth sequence is proposed. After preprocessing process, the edge information of the depth is saved in the U component of depth map, which can be utilized during the encoding stage. In the encoding stage, the size of coding unit and prediction unit can be decided according to the edge information stored in the U component of depth map. Furthermore, the search range of motion search can be effectively reduced.
    The proposed edge-based motion search algorithm has been implemented in the reference software 3D-HTM 5.0. Experimental results show that the proposed algorithm can reduce on average 78% computational time during inter search, while maintaining high RD performance.

    Abstract (Chinese) i Abstract (English) iii Acknowledgements v Table of Contents vii List of Figures ix List of Tables xi Chpater 1 Introduction 1 1.1 Background 1 1.2 Motivation 3 1.3 Organization of the Thesis 5 Chpater 2 Overview of the Related Work 7 2.1 Basic Concepts of HEVC 7 2.1.1 Coding Structure 8 2.1.2 Prediction Modes 10 2.1.3 Profiles and Configurations 13 2.2 Basic Concepts of 3D-HEVC 14 2.2.1 Coding of Texture Maps 15 2.2.2 Coding of Depth Maps 19 Chpater 3 Proposed Fast Algorithms for 3D-HEVC 23 3.1 Overview of the Proposed Coding System 24 3.2 Depth Preprocessing 25 3.2.1 Characteristics of Depth Video 25 3.2.2 Edge Detection 27 3.2.3 Edge Saving 29 3.3 Fast CU and PU Partition 30 3.3.1 Fast CU Partition 31 3.3.2 Fast PU Partition 33 3.3.3 Fast Asymmetric Motion Partitioning 36 3.4 Search Range Reduction 39 3.5 Summary 40 Chpater 4 Simulation Results 43 4.1 Simulation Conditions 44 4.2 Simulation Results of Fast CU Partition 51 4.3 Simulation Results of Fast PU Partition 54 4.4 Simulation Results of Fast AMP 56 4.5 Simulation Results of Search Range Reduction 60 4.6 Simulation Results of the Whole System 62 Chpater 5 Conclusions and Future Work 71 5.1 Conclusions 71 5.2 Future Work 72 References 75 Publication List 79 Biography 81

    [1] ITU-T Rec. H.261, “Video Codec for Audiovisual Services at p × 64 kbits/s,” Dec. 1990.
    [2] ITU-T Rec. H.262 and ISO/IEC 13818-2, “Information Technology—Generic Coding of Moving Pictures and Associated Audio Information: Video,” July 1995.
    [3] ITU-T Rec. H.263, “Video Coding for Low Bit Rate Communication,” Mar. 1996.
    [4] ISO/IEC 11172-2, “Information Technology—Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About 1.5 Mbit/s—Part 2: Video,” Aug. 1993.
    [5] ISO/IEC 14496-2, “Information Technology—Coding of Audio-Visual Objects—Part 2: Visual,” Jan. 1999.
    [6] ITU-T Rec. H.264 and ISO/IEC 14496-10, “Advanced Video Coding for Generic Audiovisual Services,” May 2003.
    [7] ISO/IEC JTC1/SC29/WG11 N9784, “Introduction to 3D Video,” May 2008.
    [8] ISO/IEC JTC1/SC29/WG11 N12035, “Application and Requirements on 3D Video Coding,” Mar. 2011.
    [9] M. Tanimoto and T. Fujii, “FTV-free viewpoint television,” ISO/IEC JTC1/SC29/WG11 M8595, July 2002.
    [10] T. Fujii and M. Tanimoto, “Free-viewpoint TV system based on ray-space representation,” in Proc. SPIE ITCom, Mar. 2002, pp.175–189.
    [11] A. Smolic, K. Mueller, P. Merkle, T. Rein, M. Kautmer, P. Eisert, and T. Wiegand, “Free viewpoint video extraction, representation, coding, and rendering,” in Proc. IEEE ICIP, Oct. 2004, pp. 3287–3290.
    [12] M. Tanimoto, “FTV (free viewpoint television) for 3D scene reproduction and creation,” in Proc. IEEE CVPRW, June 2006, pp. 172–172.
    [13] M. Tanimoto, “FTV (free viewpoint television) creating ray-based image engineering,” ECTI Trans. Electrical Eng., Elect. Commun., vol 6, pp. 3–14, Feb. 2008.
    [14] M. Tanimoto, “Overview of free viewpoint television,” Signal Process.-Image Commun., vol. 21, pp. 454–461, July 2006.
    [15] F. Isgrò, E. Trucco, P. Kauff, and O. Schreer, “Three-dimensional image processing in the future of immersive media,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, pp. 388–303, Mar. 2003.
    [16] A. Smolic and P. Kauff, “Interactive 3-D video representation and coding technologies,” Proc. IEEE, vol. 93, pp. 98–110, Jan. 2005.
    [17] ITU-T Rec. H.265 and ISO/IEC 23008-2, “High Efficiency Video Coding (HEVC),” Jan. 2013.
    [18] K. Ugur, K. Andersson, A. Fuldseth, G. Bjontegaard, L. P. Endresen, J. Lainema, A. Hallapuro, J. Ridge, D. Rusanovskyy, C. Zhang, A. Norkin, C. Priddle, T. Rusert, J. Samuelsson, R. Sjoberg, and Z. Wu, “High performance, low complexity video coding and the emerging HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 1688–1697, Dec. 2010.
    [19] High Efficiency Video Coding (HEVC). [Online]. Available: http://hevc.hhi.fraunhofer.de/
    [20] H.265.net. [Online]. Available: http://www.h265.net/
    [21] JCT-VC Document Management System. [Online]. Available: http://phenix.int-evry.fr/jct/
    [22] H. Schwarz, K. Wegner, “Test Model under Consideration for HEVC based 3D video coding”, ISO/IEC JTC1/SC29/WG11 and MPEG2011/N12559, San Jose, CA, USA, Feb. 2012.
    [23] JCT-3V Document Management System. [Online]. Available: http://phenix.int-evry.fr/jct2/
    [24] W. Dai, O. C. Au, S. Li, L. Sun and R. Zou, “Fast sub-pixel motion estimation with simplified modeling in HEVC,” in Proc. 2012 IEEE ISCAS, May 2012.
    [25] N. Purnachand, L. N. Alves and A. Navarro, “Fast motion estimation algorithm for HEVC,” in Proc. IEEE ICCE, Sept. 2012, pp. 34–37.
    [26] W. Dai, O. C. Au, S. Li, L. Sun and R. Zou, “Adaptive search range algorithm based on Cauchy distribution,” in Proc. IEEE VCIP, Nov. 2012, pp. 1–5.
    [27] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang, “An effective CU size decision method for HEVC encoders,” IEEE Trans. Multimedia, vol. 15, no. 2, pp. 465–470, Feb. 2013.
    [28] J. S. Lim, Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ: Prentice-Hall, 1990, pp. 478–488.
    [29] J. R. Parker, Algorithms for Image Processing and Computer Vision. New York: John Wiley & Sons, Inc., 1997, pp. 23–29.
    [30] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. vol. 8, pp. 679–698, Nov. 1986.
    [31] HEVC 3D Extension Software Repository (HHI). [Online]. Available: https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/
    [32] ISO/IEC JTC1/SC29/WG11 and MPEG2011/N12036, “Call for Proposals on 3D Video Coding Technology”, Geneva, Switzerland, Mar. 2011.
    [33] G. Bjontegaard, “Calculation of average PSNR differences between RD-curves”, ITU-T SC16/Q6, Doc. VCEG-M33, 13th VCEG Meeting, Austin, Texas, USA, April 2001.

    無法下載圖示 校內:2018-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE