簡易檢索 / 詳目顯示

研究生: 劉淑秀
Liu, Shu-Hsiu
論文名稱: 應用數位相機發展非接觸式量測技術及建立自動化運算程式
Noncontact Image-Based Measurement Techniques and Automatic Programming Using Digital Camera
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 146
中文關鍵詞: 數位影像數位相機實驗量測變位裂縫複合材料凹口應力集中係數影像相關性影像處理有限元素法最小二乘法
外文關鍵詞: Digital camera, Computer image, Crack, Composite, Notch, Crack opening Displacement, Stress intensity factors, Digital-image-correlation experiment, Least-squares method, Finite element method
相關次數: 點閱:184下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般而言實驗量測的方法包括應變計量測,光彈法、thermoelastic法及Moire法…等,上述之方法因實驗儀器昂貴及複雜的實驗步驟,影響了實驗之準確度及可行性。近年來數位相機技術進步,除了解析度大幅提升、使用便利性等優點外,搭配實體顕微鏡已可用來進行微觀實驗,本論文研究目的發展標記點及影像相關性兩套非接觸式量測技術,利用數位相機搭配實體顕微鏡,量測均向性材料及複合材料的彈性及塑性變位,並將所得之變位值配合最小二乘法求得試體開裂處之應力集中係數,以及計算組合鋼構件之彎矩及剪力值,量測結果將與有限元素分析法及理論解作比較。本論文發展之量測技術優點為(1)實驗儀器及試驗步驟簡單、可行性及準確度高,且實驗裝置不需加入隔震設備(2)量測範圍可任意選取,不需考慮邊界條件(3)估算開裂處之應力集中係數時,不需使用非常靠近裂縫尖端之變位值(4)本論文所建立之自動化計算程式,快速將受力前後之數位影像資料進行分析,並計算出變位值及材料破壞參數(5)數位相機所擷取材料受力變形之歷時影像紀錄可永久儲存作為材料在其他方面研究之參考。

    In the past experience, digital camera often only used for recording the procedure of experiment and taking the image. With the development in science and technology. The progress of digital camera is very quickly, and the price is more and more inexpensive. The digital image processing is becoming increasingly important as an experimental tool in the field of physics and experimental mechanics etc. The deformation of structure or frame is an important index to evaluate the strength of structure. The numerous experimental methods such as sensors, gauges or extensometers for measuring displacements and strains; moiré and computer image methods are often used to find the COD values of cracked structures. Several different types of transducers can be used to measure the deflection. However, most of these sensors require the access to measurement location and the instrument cost. In addition, the installation of these instruments is time consuming and the experimental procedure complex that makes it unsuitable for use in harsh environmental conditions. This thesis develop the non-contact digital image technique to measure structural displacement of an object surface in the field of experimental solid mechanics using the digital camera and personal computer only. Because digital image technique does not need a complicated optical system and the operation takes place in normal conditions, without extra vibration isolation. Hence, the measurement can be performed simply and easily. Thus, a lot of applications of this method to various problems can be found.

    ACKNOWLEDGEMENTS (Chinese) ............................................................ Ⅰ ABSTRACT (Chinese)...................................................................................... Ⅱ ABSTRACT....................................................................................................... Ⅲ CONTENTS....................................................................................................... IV LIST OF FIGURES ......................................................................................VIII LIST OF TABLES............................................................................................. XI LIST OF SYMBOLS....................................................................................... XII Chapter 1 Introduction 1 1.1 Prologue 1 1.2 Objectives and Scope of Research 2 1.3 Organization of Dissertation 4 Chapter 2 Literature Review 5 2.1 Research correlated with the experimental displacement measurement using computer images 5 2.2 Research correlated with the experimental measurement of SIFs for the isotropic materials using computer images. 6 2.3 Research correlated with the experimental measurement of SIFs for the composites using computer images. 7 2.4 Research related to estimating the moment and shear force of the beam using computer images 9 2.5 Research related with the deformation measurement usingthe digital-image-correlation method 10 2.6 Research related with the experiment and numerical methods to evaluate the SIFs for a shape notch 12 Chapter 3 Details of the Digital Camera Measurement experiment and Computer Image Analysis System 14 3.1 Introduction 14 3.2 Experimental set-up and procedural details 14 3.2.1 Optical system 15 3.2.2 Surface pattern on the specimen and application 15 3.2.3 Experimental procedures 18 3.3 Computer image analysis system 18 3.3.1 Evaluation of deformation from computer images 18 3.3.2 Experimental accuracy due to ambient vibrations 20 3.4 Summary 22 Chapter 4 Determination of Stress Intensity Factors of the Isotropic Materials by Digital Camera 23 4.1 Introduction 23 4.2 Calculating SIFs using the least-squares method 23 4.2.1 Least-squares method using finite element results 24 4.2.2 Least-squares method using crack opening displacements from experiments 26 4.3 Numerical validation 27 4.3.1 Accuracy of the least-squares method using finite element results 28 4.3.2 Accuracy of the least-squares method using simulated COD values 31 4.4 Illustration of the digital camera experiment 35 4.4.1 Specimens 35 4.4.2 Optical system 36 4.4.3 Experimental details 37 4.5 Experimental results and comparisons 38 4.6 Summary 42 Chapter 5 Evaluation of Stress Intensity Factors of Composites Using Crack Opening Displacements 43 5.1 Introduction 43 5.2 Calculating SIFs using least-squares method 43 5.2.1 Displacement fields of a cracked plate 43 5.2.2 Calculating SIF using COD by the least-squares method 46 5.3 Numerical validation 48 5.4 Illustration of experiment 52 5.4.1 Process of making composite specimen 52 5.4.2 Optical system 54 5.4.3 Experimental procedures 55 5.4.4 Experimental accuracy due to the laboratory micro-vibration 58 5.5 Experimental results and comparisons 58 5.6 Summary 59 Chapter 6 Measurement Structural Displacements Using Digital Camera 62 6.1 Introduction 62 6.2 The digital camera experiment applied in the laboratory 62 6.2.1 Experiment details 62 6.2.2 Numerical validation 65 6.2.3 Experimental results and comparisons 66 6.3 The digital camera experiment was conducted in natural environment 69 6.3.1 Experiment details 69 6.3.2 Numerical validation for a simply supported beam subjected to a concentrated force 72 6.3.3 Numerical validation for the least-squares method used for fitting displacement data 73 6.3.4 Experimental results and comparisons 74 6.4 Summary 76 Chapter 7 Evaluation of beam moment and shear force using a digital camera experiment 77 7.1 Introduction 77 7.2 Algorithm to calculate beam moment and shear force 77 7.2.1 Evaluation of beam displacements using the least-squares method 78 7.2.2 Calculation of beam moments and shear forces 81 7.3 Theoretical and numerical validations 83 7.3.1 A simply supported beam subjected to a uniform load 83 7.3.2 A simply supported beam subjected to a large concentrated force at beam center 86 7.4 Illustration of digital camera experiment 89 7.4.1 Specimen 89 7.4.2 Experimental procedures 89 7.4.3 Experimental accuracy due to ambient vibrations 92 7.5 Experimental results and comparisons 92 7.5.1 Comparison of the results between specimen A and FEA 92 7.5.2 Comparison of the results between specimen B and FEA 96 7.6 Summary 98 Chapter 8 Determination 2D notch SIFs by image-correlation method 99 8.1 Introduction 99 8.2 Calculating SIFs using least-squares method 99 8.2.1 Displacement fields due to a sharp notch 99 8.2.2 Least-squares method to find SIFs of a sharp V-notch 101 8.3 Validations using finite element method 103 8.3.1 Detail of V-notches specimens 103 8.3.2 Accuracy of least-squares method using finite element results 103 8.4 Experimental Validations 109 8.4.1 Optical system and random pattern 109 8.4.2 Experimental details 111 8.4.3 Image-correlation method and analysis procedures 111 8.4.4 Experimental results and comparisons 113 8.5 Summary 117 Chapter 9 Conclusions and Recommendations 118 9.1 Conclusions 118 9.2 Recommendations for Further Research 121 REFERENCES 122 APPENDIX A 129 APPENDIX B 141 VITA……………………………………………………………………………………...146

    [1]Bruck H.A., McNeill S.R., Sutton M.A., Peters W.H., Digital image correlation using Newton-Raphson method of partial differential correlation,Experimental Mechanics, Vol.29, pp.261-267, 1989.
    [2]Baumann, Peter H., Butefisch K.A., Measurement of hinge moments and model deformations in wind tunnels by means of Moire interferometry,Society of Photo-Optical Instrument Engineering, Vol.2546, pp.16-32, 1995.
    [3]Barbero E.J. and Turk M., Experimental investigation of beam-column behavior of pultruded structural shapes, Journal of Reinforced Plastics and Composites, Vol.19, pp.249-265, 2000.
    [4]Blakeborough A., Clement D., Williams M.S., Woodward N., Novel load cell for measuring axial force, shear force, and bending movement in large-scale structural experiments, Experimental Mechanics, Vol.42,
    pp.115-122, 2002.
    [5]Chu T.C., Ranson W.F., Sutton M.A., Peters W.H., Application of digital image correlation technique to experimental mechanics, Experimental Mechanics, Vol.25, pp.232-244, 1985.
    [6]Chen D.A., Stress intensity factors for V-notched strip under tension or in-plane bending, International Journal of Fracture, Vol.70, pp.81-97, 1995.
    [7]Chen J.T., Wang W.C., Experimental analysis of an arbitrarily inclined semi-infinite crack terminated at the bimaterial interface, Experimental Mechanics, Vol.36, pp.7-16, 1996.
    [8]Chao, Y.J., Luo, P.F., Kalthoff, J.F., An experimental study of the deformation fields around a propagating crack tip, Experimental Mechanics, Vol.38, pp.79-85, 1998.
    [9]Chang J.H., Wu D.J., Finite element calculation of elastodynamic stress field around a notch tip via contour integrals, International Journal of Solids and Structures, Vol.40, pp.1189-1202, 2003.
    [10]Davies J., Study of shear fracture in mortar specimens, Cement and Concrete Research, Vol.25, pp.1031-1042, 1995.
    [11]Della-Ventura D., Smith R.N.L., Some applications of singular fields in the solution of crack problems, International Journal for Numerical Methods in
    Engineering, Vol.42, pp. 927-942, 1998.
    [12]L.C., Wu L.Z., Ma L., The interface crack problem under a concentrated load for a functionally graded coating-substrate composite system,
    Composite and Structural, Vol.63, pp.397-406, 2004.
    [13]Henshell, R.D., Shaw, K.G., Crack tip elements are unnecessary, International Journal for Numerical Method in Engineering, Vol.9, pp.495-509, 1975.
    [14]Hua Lu, Chiang F.P., Photoelastic study of interfacial fracture of biomaterial, Optics and Lasers in Engineering, Vol.14, pp.217-234, 1991.
    [15]Hillstrom L., Lundberg B., Analysis of elastic flexural waves in non-uniform beams based on measurement of strains and accelerations, Journal of Sound
    and Vibration, Vol.247, pp.227-242, 2001.
    [16]Irwin, G.R., Analysis of stresses and strains near the end of a crack traveling a plate Trans, ASME Journal of Applied Mechanics, 1957.
    [17]Ju, S.H., Simulating stress intensity factors for anisotropic materials by the least squares method, International Journal of Fracture, Vol.81, pp.283-297,
    1996.
    [18]Ju, S.H., Lesniak J.R. , Sandor B.I., Finite element simulation of stress intensity factors via the thermoelastic technique, Experimental Mechanics,
    Vol.37, pp. 278-284. 1997.
    [19]Ju, S.H., Simulating three-dimensional stress intensity factors by the least-squares method, nternational Journal for Numerical Method in
    Engineering, Vol.43, pp.1437-1451, 1998.
    [20]Jean-Noel Perie, Sylvain Calloch, Christophe Cluzel, Francois Hild,Analysis of a multiaxial test on C/C composite by using digital image correlation and a damage model, Experimental Mechanics, Vol.42, pp.318-328,2002.
    [21]Ju S.H., Rowlands R.E., Thermoelastic Determination of KI and KII in an orthotropic graphite/epoxy composite, Journal of Composite Materials, Vol.37, pp.2011-2025, 2003.
    [22]Khalil S.A., Sun C.T., Hwang W.C., Application of a hybrid finite element method to determine stress intensity factors in unidirectional composites, International Journal of Fracture, Vol.31, pp.37-51, 1986.
    [23]Kitagawa, H. and Yuuki, R., Analysis of Arbitrarily shaped crack in a finite plate using conformal mapping, 1st report-construction of analysis procedure and its applicability, Experimental Mechanics, Vol.43, pp.4354-4362, 1977.
    [24]Kondo T., Kobayashi M., Sekine H., Strain gage method for determining stress intensities of sharp-notched strips, Experimental Mechanics, Vol.41, pp.1-7, 2001.
    [25]Lekhnitskii S.G., Theory of elasticity of an anisotropic body, Holden-Day, San Francisco, 1963.
    [26]Lin K.Y., Tong P., Singular finite elements for the fracture analysis of V-notched plate, International Journal For Numerical Methods in Engineering, Vol.15, pp.1343-1354, 1980.
    [27]Lu H., Vendroux G., Knauss W.G., Surface deformation measurements of a cylindrical specimen by digital image correlation, Experimental Mechanics, Vol.37, pp.433-439, 1997.
    [28]Lin C.S., Pilot-type scientific experimental device using optical method and computer vision technology, INDILAN Journal of Pure & Applied Physics, Vol.40, pp.816-827, 2002.
    [29]Lin S.S., Liao J.C., Chen J.T., Chen L., Lateral performance of piles evaluated via inclinometer data, Computer and Geotectonic, Vol.32, pp.411-421, 2005.
    [30]McNeill S.R., Peters W.H., Sutton M.A., Estimation of stress intensity factor by digital image correlation, Engineering Fracture Mechanics, Vol.28,
    pp.101-112, 1987.
    [31]Machida K., Study of stress-analyzing system by speckle photography, JSME International Journal Series A-Solid Mechanics and Material Engineering, Vol.43, pp.343-350, 2000.
    [32]Mattoni M.A., Zok F.W., A method for determining the stress intensity factor of a single edge-notched tensile specimen, International Journal of Fracture,
    Vol.119, pp.376-392, 2003.
    [33]Nahm S.H., Lee H.M., Suh C.M., A study on observation and growth behavior of small surface cracks by remote measurement system, KSME Journal, Vol.10, pp. 396-404, 1996.
    [34]Noda N.A., Oda K., Inoue T., Analysis of newly-defined stress intensity factors for angular corners using singular integral equation of the body force method, International Journal of Fracture, Vol.31, pp.243-261, 1996.
    [35]Niu L.S., Shi H.J., Robin C., Pluvinage G., Elastic and elastic-plastic fields on circular rings containing a V-notch under inclined loads, Engineering Fracture Mechanics, Vol.68, pp.949-962, 2001.
    [36]Noda N.A., Takase Y., Generalized stress intensity factors of V-shaped notch in a round bar under torsion, tension and bending, Engineering Fracture Mechanics, Vol.70, pp.1447-1466, 2003.
    [37]Oda I., Willett A., Yamamoto M., Matsumoto T., Sosogi Y., Non-contact evaluation of stresses and deformation behavior in pre-cracked dissimilar welded plates, Engineering Fracture Mechanics, Vol.71, pp.1453-1475, 2004.
    [38]Qian Z.Q., On the evaluation of wedge corner stress intensity factors of bi-material joint with surface tractions, Computers & Structures, Vol.79, pp.53-64, 2001.
    [39]Ricci V., Shukla A., Singh R.P., Evaluation of fracture mechanics parameters in bimaterial systems using strain gages, Engineering Fracture Mechanics, Vol.58, pp.273-283, 1997.
    [40]Rhee J., Rowlands R.E., Moire-numerical hybrid analysis of cracks in orthotropic media, Experimental Mechanics, Vol.42, pp.311-317, 2001.
    [41]Semenski D., Jecic S., Experimental caustics analysis in fracture mechanics of anisotropic materials, Experimental Mechanics, Vol.39, pp.177-183, 1999.
    [42]Shimamoto A., Nam J., Oguchi T., Azakami T., Effect of crack closure by shrinkage of embedded shape-memory tini fiber epoxy composite under mixed-mode loading, International Journal of Mathematics & Technique,
    Vol.1, pp.263-268, 2001.
    [43]Seif M.A., Dasari N.B., Effect of combined loading on cracks in graphite/epoxy composites, Composite Structural, Vol.52, pp.539-544, 2001.
    [44]Seweryn A, Modeling of singular stress field using finite element method, International Journal of Solids and Structures, Vol.39, pp.4787-4804, 2002.
    [45]Shukla A., Chalivendra V.B., Parameswaran V., Lee K.H., Photoelastic investigation of interfacial fracture between orthotropic and isotropic materials, Optical and Lasers in Engineering, Vol.40, pp.307-324, 2003.
    [46]Tong W., Detection of plastic deformation patterns in a binary aluminum alloy, Experimental Mechanics, Vol.37, pp.452-459, 1997.
    [47]Takahashi I., Takahashi C., Kotani N., Restraint of fatigue crack growth by wedge effects of fine particles, Fatigue & Fracture of Engineering Materials
    & Structures, Vol.23, pp.867-877, 2000.
    [48]Tae-Sang Park, Dong-Cheon Baek, Soon-Bok Lee, An experimental technique for the strain measurement of small structures using pattern recognition, Sensors and Actuators, Vol.115, pp.15-22, 2004.
    [49]Tong W., Plastic surface strain mapping of bent sheets by image correlation, Experimental Mechanics, Vol.44, pp.502-511, 2004.
    [50]Wattrisse B., Chrysochoos A., Muracciole J.M., and Gaillard M.,Analysis of strain localization during tensile tests by digital image correlation, Experimental Mechanics, Vol.41, pp.29-39, 2001.
    [51]Yao X.F., Chen J.D., Jin G.C., Arakawa K., Takahashi K., Caustic analysis of stress singularities in orthotropic composite materials with mode-i crack,
    Composite Science and Technique, Vol.64, pp.917-924, 2004.
    [52]Yoneyama S., Kitagwa A, Kitamura K., Kikuta H., Deflection distribution measurement of steel structure using digital image correlation, The International Society for Optical Engineering, Vol.5880, pp.1-8, 2005
    [53]Yoneyama S., Kitagwa A, Iwata S., Tani K. and Kikuta H., Bridge deflection measurement using digital image correlation, Experimental Techniques, Vol.31, pp.34-40, 2007.
    [54]Zili Sun, Jed S. Lyons, Stephen R., McNeill, Measuring microscopic deformations with digital image correlation, Optics and Lasers in Engineering, Vol.27, pp.409-428, 1996.
    [55]Zuobin Wang, Mario S., Graca, Phase-shifted image matching algorithm for displacement measurement, Optics in Engineering, Vol.35, pp.2327-2332,
    1996.

    下載圖示 校內:2008-09-21公開
    校外:2008-09-21公開
    QR CODE