| 研究生: |
劉淑秀 Liu, Shu-Hsiu |
|---|---|
| 論文名稱: |
應用數位相機發展非接觸式量測技術及建立自動化運算程式 Noncontact Image-Based Measurement Techniques and Automatic Programming Using Digital Camera |
| 指導教授: |
朱聖浩
Ju, Shen-Haw |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 數位影像 、數位相機 、實驗量測 、變位 、裂縫 、複合材料 、凹口 、應力集中係數 、影像相關性 、影像處理 、有限元素法 、最小二乘法 |
| 外文關鍵詞: | Digital camera, Computer image, Crack, Composite, Notch, Crack opening Displacement, Stress intensity factors, Digital-image-correlation experiment, Least-squares method, Finite element method |
| 相關次數: | 點閱:184 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般而言實驗量測的方法包括應變計量測,光彈法、thermoelastic法及Moire法…等,上述之方法因實驗儀器昂貴及複雜的實驗步驟,影響了實驗之準確度及可行性。近年來數位相機技術進步,除了解析度大幅提升、使用便利性等優點外,搭配實體顕微鏡已可用來進行微觀實驗,本論文研究目的發展標記點及影像相關性兩套非接觸式量測技術,利用數位相機搭配實體顕微鏡,量測均向性材料及複合材料的彈性及塑性變位,並將所得之變位值配合最小二乘法求得試體開裂處之應力集中係數,以及計算組合鋼構件之彎矩及剪力值,量測結果將與有限元素分析法及理論解作比較。本論文發展之量測技術優點為(1)實驗儀器及試驗步驟簡單、可行性及準確度高,且實驗裝置不需加入隔震設備(2)量測範圍可任意選取,不需考慮邊界條件(3)估算開裂處之應力集中係數時,不需使用非常靠近裂縫尖端之變位值(4)本論文所建立之自動化計算程式,快速將受力前後之數位影像資料進行分析,並計算出變位值及材料破壞參數(5)數位相機所擷取材料受力變形之歷時影像紀錄可永久儲存作為材料在其他方面研究之參考。
In the past experience, digital camera often only used for recording the procedure of experiment and taking the image. With the development in science and technology. The progress of digital camera is very quickly, and the price is more and more inexpensive. The digital image processing is becoming increasingly important as an experimental tool in the field of physics and experimental mechanics etc. The deformation of structure or frame is an important index to evaluate the strength of structure. The numerous experimental methods such as sensors, gauges or extensometers for measuring displacements and strains; moiré and computer image methods are often used to find the COD values of cracked structures. Several different types of transducers can be used to measure the deflection. However, most of these sensors require the access to measurement location and the instrument cost. In addition, the installation of these instruments is time consuming and the experimental procedure complex that makes it unsuitable for use in harsh environmental conditions. This thesis develop the non-contact digital image technique to measure structural displacement of an object surface in the field of experimental solid mechanics using the digital camera and personal computer only. Because digital image technique does not need a complicated optical system and the operation takes place in normal conditions, without extra vibration isolation. Hence, the measurement can be performed simply and easily. Thus, a lot of applications of this method to various problems can be found.
[1]Bruck H.A., McNeill S.R., Sutton M.A., Peters W.H., Digital image correlation using Newton-Raphson method of partial differential correlation,Experimental Mechanics, Vol.29, pp.261-267, 1989.
[2]Baumann, Peter H., Butefisch K.A., Measurement of hinge moments and model deformations in wind tunnels by means of Moire interferometry,Society of Photo-Optical Instrument Engineering, Vol.2546, pp.16-32, 1995.
[3]Barbero E.J. and Turk M., Experimental investigation of beam-column behavior of pultruded structural shapes, Journal of Reinforced Plastics and Composites, Vol.19, pp.249-265, 2000.
[4]Blakeborough A., Clement D., Williams M.S., Woodward N., Novel load cell for measuring axial force, shear force, and bending movement in large-scale structural experiments, Experimental Mechanics, Vol.42,
pp.115-122, 2002.
[5]Chu T.C., Ranson W.F., Sutton M.A., Peters W.H., Application of digital image correlation technique to experimental mechanics, Experimental Mechanics, Vol.25, pp.232-244, 1985.
[6]Chen D.A., Stress intensity factors for V-notched strip under tension or in-plane bending, International Journal of Fracture, Vol.70, pp.81-97, 1995.
[7]Chen J.T., Wang W.C., Experimental analysis of an arbitrarily inclined semi-infinite crack terminated at the bimaterial interface, Experimental Mechanics, Vol.36, pp.7-16, 1996.
[8]Chao, Y.J., Luo, P.F., Kalthoff, J.F., An experimental study of the deformation fields around a propagating crack tip, Experimental Mechanics, Vol.38, pp.79-85, 1998.
[9]Chang J.H., Wu D.J., Finite element calculation of elastodynamic stress field around a notch tip via contour integrals, International Journal of Solids and Structures, Vol.40, pp.1189-1202, 2003.
[10]Davies J., Study of shear fracture in mortar specimens, Cement and Concrete Research, Vol.25, pp.1031-1042, 1995.
[11]Della-Ventura D., Smith R.N.L., Some applications of singular fields in the solution of crack problems, International Journal for Numerical Methods in
Engineering, Vol.42, pp. 927-942, 1998.
[12]L.C., Wu L.Z., Ma L., The interface crack problem under a concentrated load for a functionally graded coating-substrate composite system,
Composite and Structural, Vol.63, pp.397-406, 2004.
[13]Henshell, R.D., Shaw, K.G., Crack tip elements are unnecessary, International Journal for Numerical Method in Engineering, Vol.9, pp.495-509, 1975.
[14]Hua Lu, Chiang F.P., Photoelastic study of interfacial fracture of biomaterial, Optics and Lasers in Engineering, Vol.14, pp.217-234, 1991.
[15]Hillstrom L., Lundberg B., Analysis of elastic flexural waves in non-uniform beams based on measurement of strains and accelerations, Journal of Sound
and Vibration, Vol.247, pp.227-242, 2001.
[16]Irwin, G.R., Analysis of stresses and strains near the end of a crack traveling a plate Trans, ASME Journal of Applied Mechanics, 1957.
[17]Ju, S.H., Simulating stress intensity factors for anisotropic materials by the least squares method, International Journal of Fracture, Vol.81, pp.283-297,
1996.
[18]Ju, S.H., Lesniak J.R. , Sandor B.I., Finite element simulation of stress intensity factors via the thermoelastic technique, Experimental Mechanics,
Vol.37, pp. 278-284. 1997.
[19]Ju, S.H., Simulating three-dimensional stress intensity factors by the least-squares method, nternational Journal for Numerical Method in
Engineering, Vol.43, pp.1437-1451, 1998.
[20]Jean-Noel Perie, Sylvain Calloch, Christophe Cluzel, Francois Hild,Analysis of a multiaxial test on C/C composite by using digital image correlation and a damage model, Experimental Mechanics, Vol.42, pp.318-328,2002.
[21]Ju S.H., Rowlands R.E., Thermoelastic Determination of KI and KII in an orthotropic graphite/epoxy composite, Journal of Composite Materials, Vol.37, pp.2011-2025, 2003.
[22]Khalil S.A., Sun C.T., Hwang W.C., Application of a hybrid finite element method to determine stress intensity factors in unidirectional composites, International Journal of Fracture, Vol.31, pp.37-51, 1986.
[23]Kitagawa, H. and Yuuki, R., Analysis of Arbitrarily shaped crack in a finite plate using conformal mapping, 1st report-construction of analysis procedure and its applicability, Experimental Mechanics, Vol.43, pp.4354-4362, 1977.
[24]Kondo T., Kobayashi M., Sekine H., Strain gage method for determining stress intensities of sharp-notched strips, Experimental Mechanics, Vol.41, pp.1-7, 2001.
[25]Lekhnitskii S.G., Theory of elasticity of an anisotropic body, Holden-Day, San Francisco, 1963.
[26]Lin K.Y., Tong P., Singular finite elements for the fracture analysis of V-notched plate, International Journal For Numerical Methods in Engineering, Vol.15, pp.1343-1354, 1980.
[27]Lu H., Vendroux G., Knauss W.G., Surface deformation measurements of a cylindrical specimen by digital image correlation, Experimental Mechanics, Vol.37, pp.433-439, 1997.
[28]Lin C.S., Pilot-type scientific experimental device using optical method and computer vision technology, INDILAN Journal of Pure & Applied Physics, Vol.40, pp.816-827, 2002.
[29]Lin S.S., Liao J.C., Chen J.T., Chen L., Lateral performance of piles evaluated via inclinometer data, Computer and Geotectonic, Vol.32, pp.411-421, 2005.
[30]McNeill S.R., Peters W.H., Sutton M.A., Estimation of stress intensity factor by digital image correlation, Engineering Fracture Mechanics, Vol.28,
pp.101-112, 1987.
[31]Machida K., Study of stress-analyzing system by speckle photography, JSME International Journal Series A-Solid Mechanics and Material Engineering, Vol.43, pp.343-350, 2000.
[32]Mattoni M.A., Zok F.W., A method for determining the stress intensity factor of a single edge-notched tensile specimen, International Journal of Fracture,
Vol.119, pp.376-392, 2003.
[33]Nahm S.H., Lee H.M., Suh C.M., A study on observation and growth behavior of small surface cracks by remote measurement system, KSME Journal, Vol.10, pp. 396-404, 1996.
[34]Noda N.A., Oda K., Inoue T., Analysis of newly-defined stress intensity factors for angular corners using singular integral equation of the body force method, International Journal of Fracture, Vol.31, pp.243-261, 1996.
[35]Niu L.S., Shi H.J., Robin C., Pluvinage G., Elastic and elastic-plastic fields on circular rings containing a V-notch under inclined loads, Engineering Fracture Mechanics, Vol.68, pp.949-962, 2001.
[36]Noda N.A., Takase Y., Generalized stress intensity factors of V-shaped notch in a round bar under torsion, tension and bending, Engineering Fracture Mechanics, Vol.70, pp.1447-1466, 2003.
[37]Oda I., Willett A., Yamamoto M., Matsumoto T., Sosogi Y., Non-contact evaluation of stresses and deformation behavior in pre-cracked dissimilar welded plates, Engineering Fracture Mechanics, Vol.71, pp.1453-1475, 2004.
[38]Qian Z.Q., On the evaluation of wedge corner stress intensity factors of bi-material joint with surface tractions, Computers & Structures, Vol.79, pp.53-64, 2001.
[39]Ricci V., Shukla A., Singh R.P., Evaluation of fracture mechanics parameters in bimaterial systems using strain gages, Engineering Fracture Mechanics, Vol.58, pp.273-283, 1997.
[40]Rhee J., Rowlands R.E., Moire-numerical hybrid analysis of cracks in orthotropic media, Experimental Mechanics, Vol.42, pp.311-317, 2001.
[41]Semenski D., Jecic S., Experimental caustics analysis in fracture mechanics of anisotropic materials, Experimental Mechanics, Vol.39, pp.177-183, 1999.
[42]Shimamoto A., Nam J., Oguchi T., Azakami T., Effect of crack closure by shrinkage of embedded shape-memory tini fiber epoxy composite under mixed-mode loading, International Journal of Mathematics & Technique,
Vol.1, pp.263-268, 2001.
[43]Seif M.A., Dasari N.B., Effect of combined loading on cracks in graphite/epoxy composites, Composite Structural, Vol.52, pp.539-544, 2001.
[44]Seweryn A, Modeling of singular stress field using finite element method, International Journal of Solids and Structures, Vol.39, pp.4787-4804, 2002.
[45]Shukla A., Chalivendra V.B., Parameswaran V., Lee K.H., Photoelastic investigation of interfacial fracture between orthotropic and isotropic materials, Optical and Lasers in Engineering, Vol.40, pp.307-324, 2003.
[46]Tong W., Detection of plastic deformation patterns in a binary aluminum alloy, Experimental Mechanics, Vol.37, pp.452-459, 1997.
[47]Takahashi I., Takahashi C., Kotani N., Restraint of fatigue crack growth by wedge effects of fine particles, Fatigue & Fracture of Engineering Materials
& Structures, Vol.23, pp.867-877, 2000.
[48]Tae-Sang Park, Dong-Cheon Baek, Soon-Bok Lee, An experimental technique for the strain measurement of small structures using pattern recognition, Sensors and Actuators, Vol.115, pp.15-22, 2004.
[49]Tong W., Plastic surface strain mapping of bent sheets by image correlation, Experimental Mechanics, Vol.44, pp.502-511, 2004.
[50]Wattrisse B., Chrysochoos A., Muracciole J.M., and Gaillard M.,Analysis of strain localization during tensile tests by digital image correlation, Experimental Mechanics, Vol.41, pp.29-39, 2001.
[51]Yao X.F., Chen J.D., Jin G.C., Arakawa K., Takahashi K., Caustic analysis of stress singularities in orthotropic composite materials with mode-i crack,
Composite Science and Technique, Vol.64, pp.917-924, 2004.
[52]Yoneyama S., Kitagwa A, Kitamura K., Kikuta H., Deflection distribution measurement of steel structure using digital image correlation, The International Society for Optical Engineering, Vol.5880, pp.1-8, 2005
[53]Yoneyama S., Kitagwa A, Iwata S., Tani K. and Kikuta H., Bridge deflection measurement using digital image correlation, Experimental Techniques, Vol.31, pp.34-40, 2007.
[54]Zili Sun, Jed S. Lyons, Stephen R., McNeill, Measuring microscopic deformations with digital image correlation, Optics and Lasers in Engineering, Vol.27, pp.409-428, 1996.
[55]Zuobin Wang, Mario S., Graca, Phase-shifted image matching algorithm for displacement measurement, Optics in Engineering, Vol.35, pp.2327-2332,
1996.