簡易檢索 / 詳目顯示

研究生: 陳彥豪
Chen, Yen-Hao
論文名稱: 介電陶瓷材料(1-y)(Mg4-xZnx)Nb2O9–ySrTiO3之研製及微波特性之探討
Study on Microwave Dielectric Material of (1-y)(Mg4-xZnx)Nb2O9–ySrTiO3
指導教授: 李炳鈞
LI, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 介電陶瓷共振溫度飄移係數
外文關鍵詞: dielectric ceramic, τf
相關次數: 點閱:56下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討(Mg4-xZnx)Nb2O9介電材料之共振頻率溫度漂移係數改善方法。為了將其負的共振頻率溫度飄移係數調整至趨近於零,我們添加具正值共振頻率溫度飄移係數的材料SrTiO3 (+1700 ppm/℃)經由實驗的結果,我們得知0.5Mg4Nb2O9–0.5SrTiO3有最佳的微波介電特性,其 約為22.8、Q×f約為11,700 GHz (at 9.79 GHz)及τf約為+4.7 ppm/℃。
    另外0.52Mg3.5Zn0.5Nb2O9–0.48SrTiO3,其 約為23.3、Q×f約為55,000 GHz(at 9.8GHz)及τf約為-6 ppm/℃,和0.55Mg3ZnNb2O9–0.45SrTiO3,其 約為23.7、Q×f約為50,000 GHz(at 9.1GHz)及τf約為-2 ppm/℃。

    The improvement of τf of (Mg4-xZnx)Nb2O9 have been investigated. In order to adjust their negative τf, SrTiO3 which have positive τf had been add. The experiment result showed that 0.5(Mg4Nb2O9–0.5SrTiO3 have the best microwave dielectric properties, it’s ~ 22.8, Q×f ~ 117,000 GHz (measured at 9.79 GHz) and τf ~ +4.7 ppm/℃.。
    And 0.52Mg3.5Zn0.5Nb2O9–0.48SrTiO3 have the best microwave dielectric properties, it’s ~ 23.3, Q×f ~55,000 GHz (measured at 9.8 GHz) and τf ~ +4.7 ppm/℃., and.55Mg3ZnNb2O9–0.45SrTiO have the best microwave dielectric properties, it’s ~ 23.7, Q×f ~50,000 GHz (measured at 9.1 GHz) and τf ~ -2ppm/℃。

    摘要 Ⅰ Abstract Ⅱ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1-1. 前言 1 1-2. 研究動機與目的 2 第二章 介電陶瓷材料原理 3 2-1. 介電陶瓷材料之微波特性 3 2-1-1. 介電性質 3 2-1-2. 介電品質因數 4 2-2. 介電理論 7 2-2-1. 介電共振氣器原理 7 2-2-2. 介電性質 10 2-3 尖晶石之結構 13 2-4陶瓷材料燒結原理 16 2-4-1. 陶瓷材料燒結之擴散機制 16 2-4-2. 陶瓷材料燒結之過程 17 2-4-3. 陶瓷材料燒結之種類 18 第三章 實驗程序與量測方法 21 3-1. 微波介電材料的製備 22 3-1-1. 粉末製備 22 3-2. 微波介電材料的特性分析與量測 25 3-2-1. X-Ray(XRD)分析 25 3-2-2. 掃瞄式電子顯微鏡(SEM)分析 26 3-2-3. 密度之量測 27 3-2-4. 微波介電特性之量測 28 3-2-5. 共振頻率溫度係數之量測 36 第四章 實驗結果與討論 37 4-1. (Mg4-xZnx)Nb2O9之特性分析與探討 37 4-1-1. (Mg4-xZnx)Nb2O9之XRD相鑑定分析 37 4-1-2. (Mg4-xZnx)Nb2O9之密度分析 44 4-1-3. (Mg4-xZnx)Nb2O9之SEM微結構分析 46 4-1-4. (Mg4-xZnx)Nb2O9之微波介電特性分析 52 4-1-5. (Mg4-xZnx)Nb2O9之共振頻率溫度飄移係數分析 54 4-1-6. (Mg4-xZnx)Nb2O9之離子極化率(αobs)分析結果 55 4-1-7. (Mg4-xZnx)Nb2O9之理論介電常數( (cal.))分析結果 57 4-2. (1-y)Mg4Nb2O9-y SrTiO3之特性分析與探討 58 4-2-1. (1–y)Mg4Nb2O9–y SrTiO3之XRD相鑑定分析 59 4-2-2. (1–y)Mg4Nb2O9–y SrTiO3之密度分析 60 4-2-3. (1–y)Mg4Nb2O9–y SrTiO3之SEM微結構分析 64 4-2-4. (1–y)Mg4Nb2O9–y SrTiO3之微波介電特性分析 67 4-2-5. (1–y)Mg4Nb2O9–y SrTiO3之共振頻率溫度飄移係數分析 69 4-3. (1-y)Mg3.5Zn0.5Nb2O9-y SrTiO3之特性分析與探討 70 4-3-1. (1–y)Mg3.5Zn0.5Nb2O9–y SrTiO3之XRD相鑑定分析 71 4-3-2. (1–y) )Mg3.5Zn0.5Nb2O9–y SrTiO3之密度分析 72 4-3-3. (1–y) )Mg3.5Zn0.5Nb2O9–y SrTiO3之SEM微結構分析 75 4-3-4. (1–y) )Mg3.5Zn0.5Nb2O9–y SrTiO3之微波介電特性分析 78 4-3-5. (1–y) )Mg3.5Zn0.5Nb2O9–y SrTiO3之共振頻率溫度飄移係數分析 81 4-4. (1-y)Mg3ZnNb2O9-y SrTiO3之特性分析與探討 82 4-4-1. (1–y)Mg3ZnNb2O9–y SrTiO3之XRD相鑑定分析 82 4-4-2. (1–y) )Mg3ZnNb2O9–y SrTiO3之密度分析 84 4-4-3. (1–y) )Mg3ZnNb2O9–y SrTiO3之SEM微結構分析 87 4-4-4. (1–y) )Mg3ZnNb2O9–y SrTiO3之微波介電特性分析 90 4-4-5. (1–y) )Mg3ZnNb2O9–y SrTiO3之共振頻率溫度飄移係數分析 92 第五章 結論 93 參考文獻 95

    [1] A. Yoshida, H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, "Influence of Zn and Ni substitutions for Mg on dielectric properties of (Mg4-xMx)(Nb2-ySby)O9 (M=Zn and Ni) solid solutions," Journal of the European Ceramic Society vol. 24, pp. 1765–1768, 2004.
    [2] D. M. Pozar, Microwave engineering, 2nd ed. New York: John Wily & Sons, Inc., 1998.
    [3] D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE Transactions ON MICROWAVE THEORY AND TECHNIQUES, vol. 32[12], pp. 1609-1616, 1984.
    [4] D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
    [5] D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
    [6] 魏炯權, 電子材料工程: 全華圖書股份有限公司, 2001.
    [7] 郭展綱, "燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用," 碩士論文, 2004.
    [8] W. D. Kingery, H. K. bowen, D. R. uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 台北市: 曉園出版社有限公司, 1988.
    [9] S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, et al., "Effect of porosity and grain size on the microwave dielectric properties of sintered alumina," Journal of the American Ceramic Society, vol. 80, pp. 1885-1888, 1997.
    [10] N. kumada, K. taki, and N. kinomura, "Single crystal structure refinement of a magnesium niobium oxide: Mg4Nb2O9," Materials research bulletin, vol. 35, pp. 1017-1021, 2000.
    [11] T. Manabe, I. Yamaguchi, W. Kondo, S. Mizuta, T. Kumagai, T. Nagahama, et al., "Topotaxy of Corundum‐Type Tetramagnesium Diniobate and Ditantalate Layers on Rock‐Salt‐Type Magnesium Oxide Substrates," Journal of the American Ceramic Society, vol. 82, pp. 2061-2065, 1999.
    [12] D. Sun, S. Senz, and D. Hesse, "Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions," Journal of the European Ceramic Society, vol. 26, pp. 3181-3190, 2006.
    [13] D. Sun, S. Senz, and D. Hesse, "Topotaxial Formation of Mg4Nb2O9 and MgNb2O6 Thin Films on MgO (001) Single Crystals by Vapor–Solid Reaction," Journal of the American Ceramic Society, vol. 86, pp. 1049-1051, 2003.
    [14] F. V. Lenel, "Sintering in Presence of a Liquid Phase," Trans. Am. Inst.Mining. Met. Engrs, pp. 878-905, 1948.
    [15] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering. New York: Consultants Bureau, 1970.
    [16] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon, et al., "Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values," Journal of Applied Physics, vol. 33, pp. 5466-5470, 1994.
    [17] 肖定全, 陶瓷材料: 新文京開發出版有限公司, 2003.
    [18] W. F. Smith, 劉品均(譯), and 施佑蓉(譯), 材料科學與工程, 3 red.: 高立圖書有限公司, 2005.
    [19] J. W. Cahn and R. B. Heady, "Analysis of capillary forces in liquid-phase s-intering of jagged particles," Journal of the American Ceramic Society, vol. 53[7], pp. 406-409, 1970.
    [20] W. J. Huppmann and G. Petzow, The Elementary Mechanisms of Liquid Sintering vol. Sintering Processes: Plenum Press, 1979.
    [21] R. M. German, Liquid phase sintering: Plenum Press, 1985.
    [22] J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe allo-ys," Journal of Materials Science, vol. 24[2], pp. 500-504, 1989.
    [23] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IEEE Transactions on Microwave Theory and Techniques, vol. 8[4], pp. 402-410, 1960.
    [24] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE Transactions ON MICROWAVE THEORY AND TECHNIQUES, vol. 18[8], pp. 476-485, 1970.
    [25] P. Wheless and D. Kajfez, "The use of higher resonant modes in measuring the dielectric constant of dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, vol. 85[1], pp. 473-476, 1985.
    [26] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE Transactions ON MICROWAVE THEORY AND TECHNIQUES, vol. 33[7], pp. 586-592, 1985.
    [27] C.-L. Huang∗ and W.-R. Yang, "Low-loss microwave dielectrics using (Mg1−xZnx)4Nb2O9 (x = 0.02–0.08) solid solutions," Journal of Alloys and Compounds, pp. 2269–2272, 2011.
    [28] Y.-B. chen, "Dielectric properties and crystal structure of (Mg0. 9Zn0. 05Co0. 05) 4 (Nb1− xTax) 2O9 ceramics," Journal of Alloys and Compounds, vol. 541, pp. 283-287, 2012.
    [29] C.-L. huang, J.-Y. chen, and C.-C. liang, "Dielectric properties and mixture behavior of Mg4Nb2O9―SrTiO3 ceramic system at microwave frequency," Journal of alloys and compounds, vol. 478, pp. 554-558, 2009.
    [30] C. huang, J. Chen, and C. liang, "Dielectric properties of a new ceramic system (1-x) Mg4Nb2O9-xCaTiO3 at microwave frequency," Materials Research Bulletin, vol. 44, pp. 1111-1115, 2009.

    下載圖示 校內:2018-12-23公開
    校外:2018-12-23公開
    QR CODE