簡易檢索 / 詳目顯示

研究生: 謝彥宸
Hsieh, Yen-Chen
論文名稱: 建立酵母菌基因之組合調控資料庫
Construction of A Database of Combinatorial Regulation of Yeast Genes
指導教授: 吳謂勝
Wu, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 52
中文關鍵詞: 合作轉錄因子對合作調控
外文關鍵詞: cooperative transcription factor, combinatorial regulation
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在真核生物中,基因表現的轉錄調控通常是合作轉錄因子們進行合作調控來實現。因此,有一個能提供合作轉錄因子們和共同調控基因之間關係的資料庫將有助於生物學家研究基因表現的轉錄調控的分子機制。但目前並沒有這類的資料庫能觀察合作轉錄因子和基因之間的關係,因此,我們開發Yeast Combinatorial Regulation Database (YCRD)來提供合作轉錄因子對和調控目標基因的資料。在YCRD中我們收集了2,622個合作轉錄因子對(cooperative transcription factor pairs)和6,243個基因。這些2,622個合作轉錄因子對是從文獻中17個演算法整理出來的。我們把TF1和TF2共同目標基因定義為這些合作轉錄因子對的目標基因,而這些轉錄因子和目標基因調控關係資料是從YEASTRACT資料庫取得。在YCRD 使用者能(1)搜尋基因和哪些合作轉錄因子對有關,(2) 搜尋合作轉錄因子對調控哪些基因,(3)識別一群基因被哪些重要合作轉錄因子對調控。我們相信YCRD有利於研究酵母菌基因的組合調控。

    In eukaryotes, the transcriptional regulation of gene expression is usually controlled by cooperative transcription factors. Therefore, we need a database that provides the relationships between cooperative transcription factors and target genes. Because there is no existing database providing the relationships between cooperative transcription factors and target genes, we developed Yeast Combinatorial Regulation Database (YCRD) in this study. In YCRD, we collected 2,622 cooperative transcription factor pairs and 6,243 genes’ information. The cooperative transcription factor pairs’ information was collected from 17 algorithms. We defined a cooperative transcription factor pair’s target genes as the common target genes of the two TFs of a cooperative transcription factor pair. In YCRD, (i) users can search the relationship between cooperative transcription factor pairs and target genes, and (ii) users can identify a set of genes which are regulated by important cooperative transcription factor pairs. Finally, we believe YCRD is useful for studying combinatorial regulation of yeast genes.

    中文摘要 I 英文延伸摘要 II 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 研究背景與動機 1 1.1 分子生物學的中心法則 1 1.2 基因表現調控機制 2 1.3 轉錄因子-基因調控關係資料及轉錄因子-基因結合關係資料 3 1.4 YEASTRACT 資料庫 6 1.5 動機 7 第二章 資料來源與方法 8 2.1 資料收集 8 2.2 資料前處理 11 2.3 定義合作轉錄因子對的目標基因 13 2.4 發展識別一群基因被哪些重要合作轉錄因子對調控的工具 14 2.5 網站設計 15 第三章 結果與討論 23 3.1 資料庫功能與介面介紹 23 3.1.1 搜尋模式(Search mode) 23 3.1.2 瀏覽模式(Browse mode) 26 3.1.3 工具(Tool) 29 3.2 實例探究 30 3.3 比較和分析 33 第四章 結論與未來展望 34 4.1 結論 34 4.2 未來展望 34 參考文獻 35 附錄 40

    [1] S. Balaji, M. M. Babu, L. M. Iyer, N. M. Luscombe, and L. Aravind, “Compre-hensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast,” Journal of Molecular Biology, vol. 360, no. 1, pp. 213-227, 2006.
    [2] N. Banerjee, and M. Q. Zhang, “Identifying cooperativity among transcription factors controlling the cell cycle in yeast,” Nucleic Acids Research, vol. 31, no. 23, pp. 7024-7031, 2003.
    [3] Y. H. Chang, Y. C. Wang, and B. S. Chen, “Identification of transcription factor cooperativity via stochastic system model,” Bioinformatics, vol. 22, no. 18, pp. 2276-2282, 2006.
    [4] A. Chatr-Aryamontri, B. J. Breitkreutz, R. Oughtred, L. Boucher, S. Heinicke, D. Chen, C. Stark, A. Breitkreutz, N. Kolas, L. O'Donnell, T. Reguly, J. Nixon, L. Ramage, A. Winter, A.Sellam, C. Chang, J. Hirschman, C. Theesfeld, J. Rust, M. S. Livstone, K. Dolinski, and M. Tyers, “The BioGRID interaction database: 2015 update,” Nucleic Acids Research, vol. 43, no. D1, pp. D470-D478, 2015.
    [5] M. J. Chen, L. C. Chou, T. T. Hsieh, D. D. Lee, K. W. Liu, C. Y. Yu, Y. J. Oyang, H. K. Tsai, and C. Y. Chen, “De novo motif discovery facilitates identification of interactions between transcription factors in Saccharomyces cerevisiae,” Bioin-formatics, vol. 28, no. 5, pp. 701-708, 2012.
    [6] C. Cheng, and L. M. Li, “Systematic identification of cell cycle regulated trans-cription factors from microarray time series data,” BMC Genomics, vol. 9, no. 1, pp. 116, 2008.
    [7] C. L. Chuang, K. Hung, C. M. Chen, and G. S. Shieh, “Uncovering transcriptional interactions via an adaptive fuzzy logic approach,” BMC Bioinformatics, vol. 10, p. 400, 2009.
    [8] M. C. Costanzo, S. R. Engel, E. D. Wong, P. Lloyd, K. Karra, E. T. Chan, S. Weng, K. M. Paskov, G. R. Roe, G. Binkley, B. C. Hitz, and J. M. Cherry, “Saccharomyces Genome Database provides new regulation data,” Nucleic Acids Research, vol. 42, no. 1, pp, D717-D725, 2014.
    [9] J. L. Crespo, K. Daicho, T. Ushimaru, and M. N. Hall, “The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 276, no. 37, pp. 34441-34444, 2001.
    [10] N. Dabas, and J. Morschhäuser, “Control of ammonium permease expression and filamentous growth by the GATA transcription factors GLN3 and GAT1 in Can-dida albicans,” Eukaryot Cell, vol.6, no. 5, pp. 875-888, 2007.
    [11] D. Datta, and H. Zhao, “Statistical methods to infer cooperative binding among transcription factors in Saccharomyces cerevisiae,” Bioinformatics, vol. 24, no. 4, pp. 545-552, 2008.
    [12] M. Elati, P. Neuvial, M. Bolotin-Fukuhara, E. Barillot, F. Radvanyi, and C. Rouveirol, “LICORN: learning cooperative regulation networks from gene ex-pression data,” Bioinformatics, vol. 23, no. 18, pp. 2407-2414, 2007.
    [13] C. T. Harbison, D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac, T. W. Danford, N. M. Hannett, J. B. Tagne, D. B. Reynolds, J. Yoo, E. G. Jennings, J. Zeitlinger, D. K. Pokholok, M. Kellis, P. A. Rolfe, K. T. Takusagawa, E. S. Lander, D. K. Gifford, E. Fraenkel, and R. A. Young, “Transcriptional regulatory code of a eukaryotic genome,” Nature, vol. 431, no. 7004, pp. 99-104, 2004.
    [14] D. He, D. Zhou, and Y. Zhou, “Identifying synergistic transcriptional factors involved in the yeast cell cycle using Microarray and ChIP-chip data,” In Pro-ceedings of the Fifth International Conference on Grid and Cooperative Computing Workshops, pp. 357-360, 2006.
    [15] H. Hernández, C. Aranda, L. Riego, and A. González, “Gln3-Gcn4 hybrid trans-criptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae,” Biochemical and Biophysical Research Communications, vol. 404, no. 3, pp. 859-864, 2011.
    [16] J. Hofman-Bang, “Nitrogen catabolite repression in Saccharomyces cerevisiae,” Molecular Biotechnology, vol. 12, no. 1, pp. 35-73, 1999.
    [17] F. J. Lai, M. H. Jhu, C. C. Chiu, Y. M. Huang, and W. S. Wu, “Identifying coo-perative transcription factors in yeast using multiple data sources,” BMC Systems Biology, vol. 8,no. Suppl 5, p. S2, 2014.
    [18] K. M. Lelli, M. Slattery, and R. S. Mann, “Disentangling the many layers of eukaryotic transcriptional regulation,” Annual Review of Genetics, vol. 46, pp. 43-68, 2012.
    [19] N. Nagamine, Y. Kawada, and Y. Sakakibara, “Identifying cooperative trans-criptional regulations using protein-protein interactions,” Nucleic Acids Research, vol. 33, no. 15, pp. 4828-4837, 2005.
    [20] G. Nemer, and M. Nemer, “Regulation of heart development and function through combinatorial interactions of transcription factors,” Annals of Medicine, vol. 33, no. 9, pp. 604-610, 2001.
    [21] D. Rudra, Y. Zhao, and J. R. Warner, “Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins,” The EMBO Journal, vol. 24, no. 3, pp. 533-542, 2005.
    [22] I. Simon, J. Barnett, N. Hannett, C. T. Harbison, N. J. Rinaldi, T. L. Volkert, J. J. Wyrick, J. Zeitlinger, D. K. Gifford, T. S. Jaakkola, and R. A. Young, “Serial re-gulation of transcriptional regulators in the yeast cell cycle,” Cell, vol. 106, no. 6, pp. 697-708, 2001.
    [23] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher, “Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization,” Molecular Biology of the Cell, vol. 9, no. 12, pp. 3273-3297, 1998.
    [24] R. M. Tanguay, “Transcriptional activation of heat-shock genes in eukaryotes,” Biochemistry and Cell Biology, vol. 66, no. 6, pp. 584-593, 1998.
    [25] M. C. Teixeira, P. T. Monteiro, J.F. Guerreiro, J. P. Gonçalves, N. P. Mira, S. C. dos Santos, T. R. Cabrito, M. Palma, C. Costa, A. P. Francisco, S. C. Madeira, A. L. Oliveira, A. T. Freitas, and I. Sá-Correia, “The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae,” Nucleic Acids Research, vol. 42, no. D1, pp. D161-D166, 2014.
    [26] H. K. Tsai, H. H. Lu, and W. H. Li, “Statistical methods for identifying yeast cell cycle transcription factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13532-13537, 2005.
    [27] J. Wang, “A new framework for identifying combinatorial regulation of trans-cription factors: a case study of the yeast cell cycle,” Journal of Biomedical Informatics, vol. 40, no. 6, pp. 707-725, 2006.
    [28] Y. Wang, X. S. Zhang, and Y. Xia, “Predicting eukaryotic transcriptional co-operativity by Bayesian network integration of genome-wide data,” Nucleic Acids Research, vol. 37, no. 18, pp. 5943-5958, 2009.
    [29] W. S. Wu, W. H. Li, and B. S. Chen, “Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle,” BMC Bioinformatics, vol. 7, p. 421, 2006.
    [30] W. S. Wu, and W. H. Li, “Systematic identification of yeast cell cycle trans-cription factors using multiple data sources,” BMC Bioinformatics, vol. 9, p. 522, 2008.
    [31] W. S. Wu, and F. J. Lai, “Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative trans-cription factor pairs in yeast,” BMC Genomics, vol. 16, no. Suppl 12, p. S10, 2015.
    [32] Y. Yang, Z. Zhang, Y. Li, X. G. Zhu, and Q. Liu, “Identifying cooperative trans-cription factors by combining ChIP-chip data and knockout data,” Cell Research, vol. 20, no. 11, pp. 1276-1278, 2010.
    [33] X. Yu, J. Lin, T. Masuda, N. Esumi, D. J. Zack, and J. Qian J, “Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae,” Nucleic Acids Research, vol. 34, no. 3, pp. 917-927, 2006.

    無法下載圖示 校內:2020-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE