| 研究生: |
郭又甄 Kuo, Yo-Chen |
|---|---|
| 論文名稱: |
應用極限學習機發展連續型降雨逕流模式推估臺灣南部情境流量 Developing continuous rainfall–runoff model by extreme learning machine to project scenario runoffs in southern Taiwan |
| 指導教授: |
陳憲宗
Chen, Shien‐Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 連續型降雨逕流模式 、極限學習機 、氣候變遷 |
| 外文關鍵詞: | streamflow projection, continuous rainfall–runoff model, extreme learning, climate change |
| 相關次數: | 點閱:95 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用極限學習機(extreme learning machine)輔以系集平均(ensemble mean)方法,建立臺灣南部主要集水區的連續型降雨逕流模式。為能推估氣候變遷情境下的長期連續日流量,連續型降雨逕流模式之輸入變量僅為日雨量及日溫度。本研究並探討變量的不同時間階數組合、資料預處理方法、極限學習機神經元個數、季節劃分等,建立最適合臺灣南部集水區的極限學習機降雨逕流模式。結果顯示極限學習機能有效推估集水區逕流量。本研究使用分位數增量映射(quantile delta mapping)與簡易尺度轉換(simple scaling)進行未來情境流量的偏差校正,分析氣候變遷情境(SSP2-4.5與SSP5-8.5)下未來短期(2021至2040年)與未來中期(2041至2060年)流量變化,並與基期(1995至2014年)之模擬結果比較,了解在氣候變遷情境下臺灣南部流量增減狀況。研究結果顯示臺灣南部主要集水區之氣候變遷情境總流量約為減少20%至增加30%之間,其中流量在枯水期減少,於豐水期增加,單日流量也將趨於極端。本研究以極限學習機建立之連續型降雨逕流模式,合理推估集水區逕流量之變化趨勢,並有效模擬氣候變遷下的流量變動。
This study utilized the extreme learning machine to develop a continuous rainfall–runoff model for simulating streamflow in southern Taiwan under climate change scenarios. Due to the focus on streamflow projections under these scenarios, the model incorporates rainfall and temperature as input variables but does not utilize previous runoff data. This presents a challenge in accurately simulating streamflow with this model structure. Historical streamflow simulations in the study area are deemed acceptable but tend to underestimate actual values. To address this, the study applied quantile delta mapping and simple scaling for bias correction of future scenario runoffs. Near-term (2021 to 2040) and mid-term (2041 to 2060) future streamflow were thus projected under climate change scenarios (SSP2-4.5 and SSP5-8.5). The projected results indicate that future scenario streamflow changes generally range from a decrease of 20% to an increase of 30% compared to the baseline streamflow. However, the likelihood of dry years occurring is greater than that of wet years, with higher runoff events primarily concentrated in a few wet years.
Adnan, R. M., Liang, Z., Heddam, S., Zounemat-Kermani, M., Kisi, O., & Li, B. (2020). Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. Journal of Hydrology, 586, 124371.
Atiquzzaman, M., & Kandasamy, J. (2016). Prediction of hydrological time-series using extreme learning machine. Journal of Hydroinformatics, 18(2), 345–353.
Bracho-Mujica, G., Hayman, P. T., Sadras, V. O., & Ostendorf, B. (2019). Simple scaling of climate inputs allows robust extrapolation of modelled wheat yield risk at a continental scale. Climate risk management, 23, 101–113.
Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?. Journal of Climate, 28(17), 6938–6959.
Chang, F. J., Chiang, Y. M., Tsai, M. J., Shieh, M. C., Hsu, K. L., & Sorooshian, S. (2014). Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information. Journal of Hydrology, 508, 374–384.
Chen, J., & Kumar, P. (2002). Role of terrestrial hydrologic memory in modulating ENSO impacts in North America. Journal of Climate, 15(24), 3569–3585.
Cheng, M., Fang, F., Kinouchi, T., Navon, I. M., & Pain, C. C. (2020). Long lead-time daily and monthly streamflow forecasting using machine learning methods. Journal of Hydrology, 590, 125376.
Granata, F., & Di Nunno, F. (2023). Neuroforecasting of daily streamflows in the UK for short-and medium-term horizons: A novel insight. Journal of Hydrology, 624, 129888.
Hayman, P., Alexander, B., Nidumolu, U. and Wilhelm, N. (2010). Using spatial and temporal analogues to consider impacts and adaptation to climate change in the South Australian grain belt. 15th Australian Agronomy Conference, Lincoln New Zealand, 15–18
Huang, G. B., & Chen, L. (2008). Enhanced random search based incremental extreme learning machine. Neurocomputing, 71(16–18), 3460–3468.
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004, July). Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541) (Vol. 2, pp. 985–990).
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1–3), 489–501.
Huang, G., Huang, G. B., Song, S., & You, K. (2015). Trends in extreme learning machines: A review. Neural Networks, 61, 32–48.
Intergovernmental Panel on Climate Change (IPCC) (2021) Climate Change 2021: The Physical Science Basis, Contribution of Working Groups I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA.
Karimizadeh, K., & Yi, J. (2023). Modeling hydrological responses of watershed under climate change scenarios using machine learning techniques. Water Resources Management, 37(13), 5235–5254.
Lenderink, G., & Attema, J. (2015). A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environmental Research Letters, 10(8), 085001.
Li, B., & Cheng, C. (2014). Monthly discharge forecasting using wavelet neural networks with extreme learning machine. Science China Technological Sciences, 57, 2441–2452.
Liddicoat, S. K., Wiltshire, A. J., Jones, C. D., Arora, V. K., Brovkin, V., Cadule, P., ... & Ziehn, T. (2021). Compatible fossil fuel CO 2 emissions in the CMIP6 earth system models’ historical and shared socioeconomic pathway experiments of the twenty-first century. Journal of Climate, 34(8), 2853–2875.
Lima, A. R., Cannon, A. J., & Hsieh, W. W. (2016). Forecasting daily streamflow using online sequential extreme learning machines. Journal of hydrology, 537, 431–443
Lima, A. R., Hsieh, W. W., & Cannon, A. J. (2017). Variable complexity online sequential extreme learning machine, with applications to streamflow prediction. Journal of hydrology, 555, 983–994.
Lv, N., Liang, X., Chen, C., Zhou, Y., Li, J., Wei, H., & Wang, H. (2020). A long Short-Term memory cyclic model with mutual information for hydrology forecasting: A Case study in the xixian basin. Advances in Water Resources, 141, 103622.
Mao, G., Wang, M., Liu, J., Wang, Z., Wang, K., Meng, Y., ... & Li, Y. (2021). Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation. Physics and Chemistry of the Earth, Parts a/b/c, 123, 103026.
Mearns, L. O., Arritt, R., Biner, S., Bukovsky, M. S., McGinnis, S., Sain, S., ... & Snyder, M. (2012). The North American regional climate change assessment program: overview of phase I results. Bulletin of the American Meteorological Society, 93(9), 1337–1362.
O’neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Sanderson, B. M. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482.
Orth, R., & Seneviratne, S. I. (2013). Propagation of soil moisture memory to streamflow and evapotranspiration in Europe. Hydrology and Earth System Sciences, 17(10), 3895–3911.
Rasouli, K., Hsieh, W. W., & Cannon, A. J. (2012). Daily streamflow forecasting by machine learning methods with weather and climate inputs. Journal of Hydrology, 414, 284–293.
Şen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9), 1042–1046.
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research: Atmospheres, 118(4), 1716–1733.
Singh, V. P. (Ed.). (1995). Computer models of watershed hydrology. Louisiana State University, Baton Rouge, LA 70803-6405, USA.
Tongal, H., & Booij, M. J. (2018). Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, 266–282.
Ullah, B., Fawad, M., Khan, A. U., Mohamand, S. K., Khan, M., Iqbal, M. J., & Khan, J. (2023). Futuristic streamflow prediction based on CMIP6 scenarios using machine learning models. Water Resources Management, 37(15), 6089–6106.
李志昕、洪景山(2011)區域系集預報系統研究:物理參數化擾動,大氣科學,39(2),95–115。
林修立、童裕翔、王俊寓、林士堯(2023)AR6統計降尺度雨量資料生產履歷(1.0 版),臺灣氣候變遷推估資訊與調適知識平台(Taiwan Climate Change Projection Information and Adaptation Knowledge Platform, TCCIP)
劉子明、林祺恒、童裕翔、陳正達(2023)以 TCCIP AR6 統計降尺度日資料探討臺灣未來水資源衝擊,土木水利,50(3),34–42。