| 研究生: |
林皓群 Lin, Hao-Chun |
|---|---|
| 論文名稱: |
基於MQTT與熱舒適模型之多裝置家庭節能控制系統設計與實作 Design and Implementation of a Multi-Device Home Energy Control System Based on MQTT and Thermal Comfort Models |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | MQTT 、熱舒適模型 、PMV/PPD 、Node-RED 、多裝置控制 |
| 外文關鍵詞: | MQTT, Thermal Comfort Model, PMV/PPD, Node-RED, Multi-Device Control |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功設計與實作一套基於 MQTT 通訊協定與 PMV/PPD 熱舒適模型的多裝置家庭節能控制系統,旨在解決傳統家電缺乏動態閾值與多機聯動所導致的能源浪費及舒適性不佳問題。系統整合了空氣清淨機、電風扇、除濕機及冷氣,並透過 Node-RED、Python 與 Home Assistant 平台,實現了跨裝置的智慧化協同管理。
本研究的核心創新在於開發了一套多指標融合控制策略,整合了熱舒適性 (PMV/PPD)、濕度 (75%/65%)、空氣品質 (PM2.5 > 25 µg/m³ / PM10 > 40 µg/m³) 與人員在場偵測 (HB100),並設計了 Core (舒適優先,PMV ±0.5, PPD < 10%) 與 Eco (節能優先,PMV ±0.65, PPD < 15%) 兩種運行模式。特別地,本研究提出了一套創新的 CLO 動態判定系統,能根據室內外溫度自動切換衣著量 (CLO) 參數,並結合台灣本土氣候數據進行優化,顯著提升了 PMV/PPD 模型在本地化應用的準確性。
實驗結果顯示,本系統在實際場域中表現出色。Eco 模式相較於傳統定溫控制可節省約 15% 的冷氣能耗,而 HB100 無人感測關閉機制則能進一步節省約 20% 的電力。此外,系統具備風速與代謝率的平滑處理機制,有效避免了控制參數突變,提升了系統運行的穩定性。本研究不僅提供了一套低成本、高效能的智慧家庭解決方案,也為台灣高溫高濕環境下的節能與舒適性管理提供了具體的實證與參考價值。
This research presents a multi-device home energy control system based on MQTT protocol and PMV/PPD thermal comfort model. The system integrates air purifier, electric fan, dehumidifier, and air conditioner through Node-RED and Home Assistant platforms. The core innovation is a multi-metric fusion control strategy incorporating thermal comfort, humidity, air quality, and occupancy detection. Two operational modes are provided: Core (comfort-priority, PMV ±0.5, PPD < 10%) and Eco (energy-priority, PMV ±0.65, PPD < 15%). A novel dynamic CLO estimation system automatically adjusts clothing insulation parameters based on indoor/outdoor temperatures, optimized for Taiwan's climate. Experimental results show 15% energy savings in Eco mode compared to traditional control, with additional 20% savings through occupancy-based shutdown. The system provides a low-cost smart home solution for Taiwan's hot and humid environment.
[1] United Nations Environment Programme (UNEP) and International Energy Agency (IEA), “Global Status Report for Buildings and Construction: Beyond Foundations - Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector,” UNEP, Nairobi, Kenya, 2023. [Online]. Available: https://www.unep.org/resources/global-status-report-buildings-and-construction-2023.
[2] 經濟部能源署, 113年能源統計手冊 (Energy Statistics Handbook 2024), 台北市: 經濟部能源署, 2025. [Online]. Available: https://www.esist.org.tw/. [Accessed: Jul. 26, 2025].
[3] 工業技術研究院, 2024家庭用電資訊百科, 新竹市: 工業技術研究院, 2025. p.25~26. [Online]. Available: https://energypark.org.tw/page/ebook/ [Accessed: Jul. 29, 2025].
[4] 國家科學技術委員會與環境部, 2024國家氣候變遷科學報告:現象、衝擊與調適, 許晃雄 and 李明旭, Eds., 台北市: 國家災害防救科技中心(NCDR), 2024.[Online].Available: https://tccip.ncdr.nat.gov.tw/ScientificReport2024/index.aspx
[5] 環境部,《112年度空氣污染防制總檢討》,臺北市:環境部,2023。 [Online]. Available: https://air.moenv.gov.tw/EnvTopics/AirQuality_8.aspx. [Accessed: Jul. 29, 2025].
[6] P. O. Fanger, "Thermal Comfort: Analysis and Applications in Environmental Engineering," Copenhagen: Danish Technical Press, 1970.
[7] ASHRAE Standard 55-2020, "Thermal Environmental Conditions for Human Occupancy," Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2020.
[8] H. Zhang, E. Arens, C. Huizenga, and T. Han, "Thermal sensation and comfort models for non-uniform and transient environments: Part II—Local comfort of individual body parts," Building and Environment, vol. 45, no. 2, pp. 389–398, 2009. https://doi.org/10.1016/j.buildenv.2009.06.015
[9] Ngarambe, J., Yun, G.Y., Santamouris, M. (2020). "The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls." Energy and Buildings, 211, 109807. DOI: 10.1016/j.enbuild.2020.109807
[10] Kim, J., Zhou, Y., Schiavon, S., Raftery, P., & Brager, G. (2018). "Personal comfort models: Predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning." Building and Environment, 129, 96-106. DOI: 10.1016/j.buildenv.2017.12.011
[11] J. Dizdarević, M. Michalke, and A. Jukan, "Engineering and experimentally benchmarking open source MQTT broker implementations," arXiv preprint arXiv:2305.13893v1, 2023. [Online]. Available: https://arxiv.org/abs/2305.13893
[12] MQTT Version 5.0, OASIS Standard, Mar. 2019. [Online]. Available: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
[13] M. Ahmed and M. M. Akhtar, "Smart home: Application using HTTP and MQTT as communication protocols," arXiv preprint arXiv:2112.10339, 2021. [Online]. Available: https://arxiv.org/abs/2112.10339
[14] Home Assistant, "MQTT Integration," Home Assistant Documentation, 2023. [Online]. Available: https://www.home-assistant.io/integrations/mqtt/
[15] D. F. Espejel-Blanco, J. A. Hoyo-Montaño, J. Arau, G. Valencia-Palomo, A. García-Barrientos, H. R. Hernández-De-León, and J. L. Camas-Anzueto, "HVAC control system using predicted mean vote index for energy savings in buildings," Buildings, vol. 12, no. 1, pp. 38, 2022. DOI: 10.3390/buildings12010038
[16] G. Simard, C. Melançon, P. Cardinal, and J. Gascon-Samson, "Performance characterization of MQTT brokers in a device-local edge deployment," in Proc. 24th Int. Middleware Conf. (Middleware '23), 2023, pp. 1–12. DOI: 10.1145/3630180.3631200
[17] Information Technology — Message Queuing Telemetry Transport (MQTT) v3.1.1, ISO/IEC 20922:2016, International Organization for Standardization, Geneva, Switzerland, 2016. [Online]. Available: https://www.iso.org/standard/69466.html
[18] C. Turley, M. Jacoby, G. Pavlak, and G. P. Henze, “Development and evaluation of occupancy-aware HVAC control for residential building energy efficiency and occupant comfort,” Energies, vol. 13, no. 20, Art. no. 5396, Oct. 2020, doi: 10.3390/en13205396.
[19] Kong, M., Dong, B., Zhang, R., & O’Neill, Z. (2022). HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study. Applied Energy, 306(Part A), 117987. https://doi.org/10.1016/j.apenergy.2021.117987
[20] K. Lee, H. Choi, H. Kim, D. D. Kim, and T. Kim, “Assessment of a Real-Time Prediction Method for High Clothing Thermal Insulation Using a Thermoregulation Model and an Infrared Camera,” Atmosphere, vol. 11, no. 1, Art. no. 106, Jan. 2020, doi: 10.3390/atmos11010106.
[21] Y. An and C. Chen, “Energy-efficient control of indoor PM2.5 and thermal comfort in a real room using deep reinforcement learning,” Energy and Buildings, vol. 295, Art. no. 113340, Jul. 2023, doi: 10.1016/j.enbuild.2023.113340.
[22] World Health Organization, "WHO Global Air Quality Guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide," Geneva: WHO Press, 2021. [Online]. Available: https://www.who.int/publications/i/item/9789240034228
[23] ASHRAE, "Addendum b to ANSI/ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy," Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2014. [Online]. Available: https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2013_b_20141209.pdf
[24] ASHRAE, "Addendum d to ANSI/ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy," Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2015. [Online]. Available: https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2013_d_20150521.pdf
[25] World Health Organization, WHO Guidelines for Indoor Air Quality: Dampness and Mould, Copenhagen, Denmark: WHO Regional Office for Europe, 2009. [Online]. Available: https://www.who.int/publications/i/item/9789289041683
[26] 內政部建築研究所, 室內環境品質簡易自評手冊 (Simple Self-Assessment Manual for Indoor Environmental Quality), 台北市: 內政部建築研究所, 2007. [Online]. Available: https://ws.moi.gov.tw/001/Upload/OldFile/moi_note_file/moi_note_file_61.pdf .[Accessed: Aug. 19, 2025].
[27] R. J. de Dear and G. S. Brager, "Developing an adaptive model of thermal comfort and preference," in *ASHRAE Transactions - 1998 Winter Meeting*, San Francisco, CA, USA, 1998, vol. 104, pt. 1: SF-98-7-3. [Online]. Available: https://escholarship.org/uc/item/4qq2p9c6
[28] 交通部中央氣象署,「台中氣候月平均」,交通部中央氣象署全球資訊網,1991–2020 年統計。 [Online]. Available: https://www.cwa.gov.tw/V8/C/C/Statistics/monthlymean.html (檢索日期: 2025年6月9日)。
[29] A.B. Asumadu-Sakyi, A.G. Barnett, P. Thai, E.R. Jayaratne, W. Miller, M.H. Thompson, R. Roghani, and L. Morawska, "The relationship between indoor and outdoor temperature in warm and cool seasons in houses in Brisbane, Australia," Energy and Buildings, vol. 191, pp. 127–142, 2019. https://doi.org/10.1016/j.enbuild.2019.03.010