簡易檢索 / 詳目顯示

研究生: 林皓群
Lin, Hao-Chun
論文名稱: 基於MQTT與熱舒適模型之多裝置家庭節能控制系統設計與實作
Design and Implementation of a Multi-Device Home Energy Control System Based on MQTT and Thermal Comfort Models
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 154
中文關鍵詞: MQTT熱舒適模型PMV/PPDNode-RED多裝置控制
外文關鍵詞: MQTT, Thermal Comfort Model, PMV/PPD, Node-RED, Multi-Device Control
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功設計與實作一套基於 MQTT 通訊協定與 PMV/PPD 熱舒適模型的多裝置家庭節能控制系統,旨在解決傳統家電缺乏動態閾值與多機聯動所導致的能源浪費及舒適性不佳問題。系統整合了空氣清淨機、電風扇、除濕機及冷氣,並透過 Node-RED、Python 與 Home Assistant 平台,實現了跨裝置的智慧化協同管理。
    本研究的核心創新在於開發了一套多指標融合控制策略,整合了熱舒適性 (PMV/PPD)、濕度 (75%/65%)、空氣品質 (PM2.5 > 25 µg/m³ / PM10 > 40 µg/m³) 與人員在場偵測 (HB100),並設計了 Core (舒適優先,PMV ±0.5, PPD < 10%) 與 Eco (節能優先,PMV ±0.65, PPD < 15%) 兩種運行模式。特別地,本研究提出了一套創新的 CLO 動態判定系統,能根據室內外溫度自動切換衣著量 (CLO) 參數,並結合台灣本土氣候數據進行優化,顯著提升了 PMV/PPD 模型在本地化應用的準確性。
    實驗結果顯示,本系統在實際場域中表現出色。Eco 模式相較於傳統定溫控制可節省約 15% 的冷氣能耗,而 HB100 無人感測關閉機制則能進一步節省約 20% 的電力。此外,系統具備風速與代謝率的平滑處理機制,有效避免了控制參數突變,提升了系統運行的穩定性。本研究不僅提供了一套低成本、高效能的智慧家庭解決方案,也為台灣高溫高濕環境下的節能與舒適性管理提供了具體的實證與參考價值。

    This research presents a multi-device home energy control system based on MQTT protocol and PMV/PPD thermal comfort model. The system integrates air purifier, electric fan, dehumidifier, and air conditioner through Node-RED and Home Assistant platforms. The core innovation is a multi-metric fusion control strategy incorporating thermal comfort, humidity, air quality, and occupancy detection. Two operational modes are provided: Core (comfort-priority, PMV ±0.5, PPD < 10%) and Eco (energy-priority, PMV ±0.65, PPD < 15%). A novel dynamic CLO estimation system automatically adjusts clothing insulation parameters based on indoor/outdoor temperatures, optimized for Taiwan's climate. Experimental results show 15% energy savings in Eco mode compared to traditional control, with additional 20% savings through occupancy-based shutdown. The system provides a low-cost smart home solution for Taiwan's hot and humid environment.

    摘要 I EXTENDED ABSTRACT II 致謝 VII 目錄 VIII 圖目錄 XV 表目錄 XVIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 研究目的與貢獻 6 1.4 論文結構 8 第二章 理論基礎 10 2.1 PMV/PPD熱舒適模型 10 2.1.1 熱舒適性研究發展 10 2.1.2 熱舒適概念與定義 11 2.1.3 PMV/PPD模型的數學基礎 12 2.1.4 PMVPPD模型在智慧家居中的應用 14 2.2 MQTT通訊協議 15 2.2.1 MQTT與IoT應用研究 15 2.2.2 MQTT協議概論 16 2.2.3 MQTT技術架構與通訊模型 16 2.2.4 MQTT在智慧家居系統中的應用 17 2.3 智慧家居控制理論 19 2.3.1 多裝置聯動與節能研究 19 2.3.2 智慧家居控制系統架構 20 2.3.3 智慧家居控制策略 21 2.3.4 多裝置聯動的控制理論 23 第三章 系統設計與方法論 24 3.1 感測層設計與資料來源 24 3.1.1 硬體架構 25 3.1.2 軟體架構 27 3.1.3 感測資料與場景控制對應關係 29 3.1.4 系統穩定性與資料品質保障機制 30 3.2 空氣清淨機模組設計與控制邏輯 34 3.2.1 問題分析與設計目標 34 3.2.2 硬體設計與規格 35 3.2.3 軟體架構與控制邏輯 36 3.2.4 穩定性與安全性設計 38 3.3 電風扇模組設計與控制邏輯 40 3.3.1 問題分析與設計目標 40 3.3.2 硬體設計與規格 40 3.3.3 軟體架構與控制邏輯 42 3.3.4 穩定性與安全性設計 43 3.4 除濕機模組設計與控制邏輯 44 3.4.1 問題分析與設計目標 44 3.4.2 硬體設計與規格 45 3.4.3 軟體架構與控制邏輯 47 3.4.4 穩定性與安全性設計 49 3.5 冷氣與熱舒適性模組設計與控制邏輯 51 3.5.1 問題分析與設計目標 51 3.5.2 硬體與軟體整合設計 51 3.5.3 PMV/PPD計算與控制邏輯 58 3.5.4 穩定性與安全性設計 67 3.5.5 CBE 舒適區圖繪製與發佈設計 68 3.5.6 總結 70 3.6 全域場景聯動模組設計與控制邏輯 71 3.6.1 問題分析與設計目標 71 3.6.2 整合架構設計 72 3.6.3 核心聯動邏輯 77 3.6.4 睡眠模式下的整合控制策略 81 3.6.5 穩定性與安全性設計 84 第四章 實驗結果與討論 86 4.1 實驗環境與系統配置 86 4.1.1 實驗環境設置 86 4.1.2 實驗系統配置 87 4.1.3 實驗方法與數據記錄 87 4.2 場景1:空氣清淨機實驗驗證 88 4.2.1 實驗步驟與UI操作 88 4.2.2 開機條件驗證: 89 4.2.3 關機條件1驗證: 90 4.2.4 關機條件2驗證: 91 4.2.5 實驗結果驗證 93 4.2.6 節能效益計算 93 4.3 場景2:電風扇實驗驗證 94 4.3.1 實驗設計與UI操作 94 4.3.2 風扇自動化場景時 95 4.3.3 風扇與熱舒適模型平滑因子測試 96 4.4 場景3:除濕機實驗驗證 99 4.4.1 實驗設計與UI操作 99 4.4.2 除濕機高閾值觸發啟動 100 4.4.3 除濕機低閾值觸發關閉 102 4.4.4 除濕機水滿通知 103 4.4.5 除濕機節能效益計算 104 4.5 場景4:冷氣與熱舒適性實驗驗證 105 4.5.1 實驗設計與環境設置 105 4.5.2 Core模式實驗與結果 107 4.5.3 Eco模式實驗與結果 108 4.5.4 Core與Eco綜合分析 110 4.5.5 CLO動態判定與系統穩定性驗證 112 4.5.6 UI監控與操作驗證 114 4.5.7 節能效益計算 115 4.6 場景5:全域場景設計與聯動實驗驗證 119 4.6.1 實驗設計與場景規劃 119 4.6.2 多設備聯動控制驗證 120 4.6.3 熱舒適性整合效果分析 122 4.6.4 節能效果與系統效率評估 124 第五章 結論與未來研究方向 127 5.1 結論 127 5.2 未來研究方向 129 參考文獻 130

    [1] United Nations Environment Programme (UNEP) and International Energy Agency (IEA), “Global Status Report for Buildings and Construction: Beyond Foundations - Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector,” UNEP, Nairobi, Kenya, 2023. [Online]. Available: https://www.unep.org/resources/global-status-report-buildings-and-construction-2023.
    [2] 經濟部能源署, 113年能源統計手冊 (Energy Statistics Handbook 2024), 台北市: 經濟部能源署, 2025. [Online]. Available: https://www.esist.org.tw/. [Accessed: Jul. 26, 2025].
    [3] 工業技術研究院, 2024家庭用電資訊百科, 新竹市: 工業技術研究院, 2025. p.25~26. [Online]. Available: https://energypark.org.tw/page/ebook/ [Accessed: Jul. 29, 2025].
    [4] 國家科學技術委員會與環境部, 2024國家氣候變遷科學報告:現象、衝擊與調適, 許晃雄 and 李明旭, Eds., 台北市: 國家災害防救科技中心(NCDR), 2024.[Online].Available: https://tccip.ncdr.nat.gov.tw/ScientificReport2024/index.aspx
    [5] 環境部,《112年度空氣污染防制總檢討》,臺北市:環境部,2023。 [Online]. Available: https://air.moenv.gov.tw/EnvTopics/AirQuality_8.aspx. [Accessed: Jul. 29, 2025].
    [6] P. O. Fanger, "Thermal Comfort: Analysis and Applications in Environmental Engineering," Copenhagen: Danish Technical Press, 1970.
    [7] ASHRAE Standard 55-2020, "Thermal Environmental Conditions for Human Occupancy," Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2020.
    [8] H. Zhang, E. Arens, C. Huizenga, and T. Han, "Thermal sensation and comfort models for non-uniform and transient environments: Part II—Local comfort of individual body parts," Building and Environment, vol. 45, no. 2, pp. 389–398, 2009. https://doi.org/10.1016/j.buildenv.2009.06.015
    [9] Ngarambe, J., Yun, G.Y., Santamouris, M. (2020). "The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls." Energy and Buildings, 211, 109807. DOI: 10.1016/j.enbuild.2020.109807
    [10] Kim, J., Zhou, Y., Schiavon, S., Raftery, P., & Brager, G. (2018). "Personal comfort models: Predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning." Building and Environment, 129, 96-106. DOI: 10.1016/j.buildenv.2017.12.011
    [11] J. Dizdarević, M. Michalke, and A. Jukan, "Engineering and experimentally benchmarking open source MQTT broker implementations," arXiv preprint arXiv:2305.13893v1, 2023. [Online]. Available: https://arxiv.org/abs/2305.13893
    [12] MQTT Version 5.0, OASIS Standard, Mar. 2019. [Online]. Available: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
    [13] M. Ahmed and M. M. Akhtar, "Smart home: Application using HTTP and MQTT as communication protocols," arXiv preprint arXiv:2112.10339, 2021. [Online]. Available: https://arxiv.org/abs/2112.10339
    [14] Home Assistant, "MQTT Integration," Home Assistant Documentation, 2023. [Online]. Available: https://www.home-assistant.io/integrations/mqtt/
    [15] D. F. Espejel-Blanco, J. A. Hoyo-Montaño, J. Arau, G. Valencia-Palomo, A. García-Barrientos, H. R. Hernández-De-León, and J. L. Camas-Anzueto, "HVAC control system using predicted mean vote index for energy savings in buildings," Buildings, vol. 12, no. 1, pp. 38, 2022. DOI: 10.3390/buildings12010038
    [16] G. Simard, C. Melançon, P. Cardinal, and J. Gascon-Samson, "Performance characterization of MQTT brokers in a device-local edge deployment," in Proc. 24th Int. Middleware Conf. (Middleware '23), 2023, pp. 1–12. DOI: 10.1145/3630180.3631200
    [17] Information Technology — Message Queuing Telemetry Transport (MQTT) v3.1.1, ISO/IEC 20922:2016, International Organization for Standardization, Geneva, Switzerland, 2016. [Online]. Available: https://www.iso.org/standard/69466.html
    [18] C. Turley, M. Jacoby, G. Pavlak, and G. P. Henze, “Development and evaluation of occupancy-aware HVAC control for residential building energy efficiency and occupant comfort,” Energies, vol. 13, no. 20, Art. no. 5396, Oct. 2020, doi: 10.3390/en13205396.
    [19] Kong, M., Dong, B., Zhang, R., & O’Neill, Z. (2022). HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study. Applied Energy, 306(Part A), 117987. https://doi.org/10.1016/j.apenergy.2021.117987
    [20] K. Lee, H. Choi, H. Kim, D. D. Kim, and T. Kim, “Assessment of a Real-Time Prediction Method for High Clothing Thermal Insulation Using a Thermoregulation Model and an Infrared Camera,” Atmosphere, vol. 11, no. 1, Art. no. 106, Jan. 2020, doi: 10.3390/atmos11010106.
    [21] Y. An and C. Chen, “Energy-efficient control of indoor PM2.5 and thermal comfort in a real room using deep reinforcement learning,” Energy and Buildings, vol. 295, Art. no. 113340, Jul. 2023, doi: 10.1016/j.enbuild.2023.113340.
    [22] World Health Organization, "WHO Global Air Quality Guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide," Geneva: WHO Press, 2021. [Online]. Available: https://www.who.int/publications/i/item/9789240034228
    [23] ASHRAE, "Addendum b to ANSI/ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy," Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2014. [Online]. Available: https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2013_b_20141209.pdf
    [24] ASHRAE, "Addendum d to ANSI/ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy," Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2015. [Online]. Available: https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2013_d_20150521.pdf
    [25] World Health Organization, WHO Guidelines for Indoor Air Quality: Dampness and Mould, Copenhagen, Denmark: WHO Regional Office for Europe, 2009. [Online]. Available: https://www.who.int/publications/i/item/9789289041683
    [26] 內政部建築研究所, 室內環境品質簡易自評手冊 (Simple Self-Assessment Manual for Indoor Environmental Quality), 台北市: 內政部建築研究所, 2007. [Online]. Available: https://ws.moi.gov.tw/001/Upload/OldFile/moi_note_file/moi_note_file_61.pdf .[Accessed: Aug. 19, 2025].
    [27] R. J. de Dear and G. S. Brager, "Developing an adaptive model of thermal comfort and preference," in *ASHRAE Transactions - 1998 Winter Meeting*, San Francisco, CA, USA, 1998, vol. 104, pt. 1: SF-98-7-3. [Online]. Available: https://escholarship.org/uc/item/4qq2p9c6
    [28] 交通部中央氣象署,「台中氣候月平均」,交通部中央氣象署全球資訊網,1991–2020 年統計。 [Online]. Available: https://www.cwa.gov.tw/V8/C/C/Statistics/monthlymean.html (檢索日期: 2025年6月9日)。
    [29] A.B. Asumadu-Sakyi, A.G. Barnett, P. Thai, E.R. Jayaratne, W. Miller, M.H. Thompson, R. Roghani, and L. Morawska, "The relationship between indoor and outdoor temperature in warm and cool seasons in houses in Brisbane, Australia," Energy and Buildings, vol. 191, pp. 127–142, 2019. https://doi.org/10.1016/j.enbuild.2019.03.010

    QR CODE