簡易檢索 / 詳目顯示

研究生: 黃純斌
Huang, Chuen-Bin
論文名稱: 氮化鎵系列發光二極體之探針量測技術之研究
A Wafer-Level Electrical Probing Technique for GaN LEDs
指導教授: 蘇炎坤
Su, Yan-Kuin
盧炎田
Lu, Yan-Tian
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 62
中文關鍵詞: 導通電壓氮化鎵探針
外文關鍵詞: GaN, forward voltage, probe
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在這一篇論文當中,我們設計出一套方法對氮化鎵磊晶片在還沒製程前,就先去預測晶片的相關參數,如此,對於預測出來元件特性差的晶片,我們將可避免再對其做製程,如此將可大量減少生產成本。在預測的參數中包含了導通電壓(Vf)、主波長(λd)、峰波長(λp)、半高寬(Δλ)、崩潰電壓(Vr)、漏電流(Ir)和發光亮度(Iv)。

      其中在Vf、λd、λp和Δλ的預測,我們希望能直接預測到當它們操作在20mA電流時的值,但由於p-GaN電阻率過大問題,使我們必須還要再加一層電流傳輸層在p-GaN上才得以使電流驅動到20mA。如此之後,對於光特性λd、λp和Δλ,其預測結果可說是非常準確;而對於Vf的預測,其預測值與結果值都能固定在一個等差值,這樣的一個結果就可以被我們拿來應用

      在崩潰電壓(Vr)、漏電流(Ir)和發光亮度(Iv)的預測中,我們取三片磊晶片並量測其dead current,由於dead current相對於主動層有絕對關係,dead current越大主動層品質越差,所以我們將可藉由一開始量dead current與最後量Vr、Ir和Iv而作成一比較表。如此,當我們取第四片晶片時,就可藉由一開始量得第四片晶片之dead current,而相對地比較預測出其Vr、Ir和Iv值。

      最後,我們發現當探針在擊穿磊晶片後,將會在磊晶片表面燒出一個孔洞,我們知悉此預測實驗之所以能夠執行,必定與這個孔洞有極大關聯。所以我們利用AFM去量測此孔洞的深度與電流分布,然後發現會有一極大電流分布在孔洞之周圍與底部,這大電流遠比一般表面電流大了數百倍,而也因為此電流之劇增,才得以使我們在未做製程之前就能驅動電流達數毫安培,而預測參數成功。

     In this dissertation, we have designed a set of methods to predict the relative parameters of GaN LED epi-wafer before the process. Accordingly, we can avoid processing the epi-wafers that we have predicted that they will have poor device quality . By means of this, we can reduce a great number of costs. The prediction parameters include forward voltage(Vf), dominant wavelength(λd), peak wavelength(λp), Full Width at Half Maximum(Δλ), break down voltage(Vr), leakage current(Ir)and electroluminescence intensity(Iv).

     In the prediction of Vf, λd, λp and Δλ, because we have the problem of p-GaN whose resistivity is too high, we have to add a current spreading layer on p-GaN to drive the inject current to 20mA so as to directly predict the value of Vf, λd, λp and Δλ. As to the prediction of optical properties, such as λd, λp and Δλ, the prediction is quite accurate. In terms of the prediction of Vf, the difference between the prediction and the result always keeps in a constant. Therefore this prediction of Vf is also applicable.

     In the prediction of Vr, Ir and Iv, we take three epi-wafers to measure their dead current. This is because dead current absolutely has relation with the active layer of LED. The higher the dead current is, the poor quality the active layer will has. Thus, we can make the values of dead current, Vr, Ir and Iv a graph. Afterward, we can relatively predict the values of Vr, Ir and Iv of the fourth epi-wafer through the dead current of the fourth epi-wafer that we have measured first.

     Finally, we find that after the probes damage the epi-wafer, there will be a burned hole in the surface of the epi-wafer. We know that the hole has great relation with the practice of the prediction. So we make use of AFM to measure the depth and current distribution of the hole. We eventually find there is a great value of current spreading in the ramp and the bottom of the hole. The current is hundreds of times higher than usual one. Because the sudden increase of the current, we can drive the inject current upto 20mA before the process and successfully predict the parameters of the epi-wafers.

    Abstract (in Chinese)---------------------------I Abstract (in English)-------------------------III 誌謝--------------------------------------------V Contents--------------------------------------VII Table Captions---------------------------------IX Figure Captions---------------------------------X Chapter 1 Introduction--------------------------1 1.1 The Background of GaN-----------------------1 1.2 Optical Properties of GaN-------------------2 1.3 Electrical Properties of GaN----------------3 Chapter 2 Characterization Instruments----------7 2.1 Photoluminescence measurement system--------7 2.2 Electroluminescence measurement system------8 2.3 Atomic Force Microscope--------------------10 Chapter 3 Theory-------------------------------14 3.1 Why to do the Experiments------------------14 3.2 How to do the Experiments------------------15 3.2.1 LED before damaging----------------------15 3.2.2 LED after damaging-----------------------15 3.2.3 Comparison between probes----------------16 Chapter 4 Experiments--------------------------24 4.1 The prediction of Vf, λd, λp, and Δλ------24 4.1.1 Prediction-------------------------------24 4.1.2 Process----------------------------------26 4.1.3 Result-----------------------------------28 4.2 The prediction of Vr, Ir, and Iv-----------31 4.2.1 The definition of Dead current-----------31 4.2.2 Prediction and Result--------------------32 Chapter 5 Discussion---------------------------47 5.1 The surface--------------------------------47 5.2 The damaging hole--------------------------47 5.2.1 The interface of the hole----------------48 5.2.2 The bottom of the hole-------------------48 Chapter 6 Conclusion and Future Works----------60 6.1 Conclusion---------------------------------60 6.2 Future Works-------------------------------60 References-------------------------------------61

    [1] S. Nakamura, T. Mukai, and M. Senoh,
    “Candela-class High-brightness
    InGaN/AlGaN Double- heterostructure Blue-
    light-emitting Diodes”, Appl.
    Phys. Lett., 64, 1687, 1994.

    [2] S. Nakamura, M. Senoh, N. Iwasa, and S.
    Nagahama, “High-power InGaN
    Single-quantum-well-structure Blue and
    Violet Light-emitting Diodes”, Appl.
    Phys. Lett. 67, 1868, 1995.

    [3] S. Chichibu, T. Sota, K. Wada, and S.
    Nakamura, “Exciton Localization in
    InGaN Quantum Well Devices”, J. Vac. Sci.
    Technol., B16, 2204, 1998.

    [4] H. Kim, S-J Park, and H. Hwang, “Effects of
    Current Spreading on the Performance of GaN-
    based Light-emitting Diode”, IEEE
    Transactions on Electron Devices, 48, 1065,
    2001.

    [5] S. Nakamura, M. Senoh, S. Nagahama, N.
    Iwasa, T. Yamada, T. Matsushita,
    H. Kiyoku, and Y. Sugimoto, “InGaN-Based
    Multi-Quantum-Well-Structure Laser Diodes”,
    Jpn. J. Appl. Phys., 35, L74, 1996.

    [6] K. Itaya, M.Onomura, J. Nishino, L. Sugiura,
    S. Saito, M. Suzuki, J. Rennie,
    S. Nunoue, M. Yamamoto, H. Fujimoto, Y.
    Kokubum, Y. Ohba, G.Hatakoshi, and M.
    Ishikawa, “Room Temperature Pulsed
    Operation of Nitride Based Multi-Quantum-
    Well Laser Diodes with Cleaved Facets on
    Conventional C-Face Sapphire Substrates”,
    Jpn. J. Appl. Phys., 35, L1315,1996.

    [7] S. Nakamura, M. Senoh, S. Nagahama, T.
    Matsushita, H. Kiyoku, Y.Sugimoto, T.
    Kozaki, H. Umemoto, M. Sana, and T. Mukai,
    “Violet InGaN/GaN/AlGaN-Based Laser Diodes
    Operable at 50oC with a Fundamental
    Transverse Mode “, Jpn. J. Appl. Phys., 38,
    L226, 1999.

    [8] V. W. L. Chin, T. L. Tansley, and T.
    Osotchan, “Electron Mobilities in Gallium,
    Indium, and Aluminum Nitrides”, J. Appl.
    Phys., 75, 7365, 1994.

    [9] M. Shur, B. Gelmont, and M. A. Khan,
    “Electron Mobility in Two-Dimensional
    Electron Gas in AlGaN/GaN Heterostructures
    and in Bulk GaN”, Journal of Electronic
    Materials, 25, 777, 1996.

    [10] K. S. Kim, C. S. Oh, W. H. Lee, K. J. Lee,
    G. M. Yang, C. H. Hong, E. K. Suh, K. Y.
    Lim, H. J. Lee, and D. J. Byun“Comparative
    Analysis of Characteristics of Si, Mg, and
    Undoped GaN“, Journal of Crystal Growth,
    210, 505, 2000.

    [11] B. E. Foutz, S. K. O’Leary, M. S. Shur,
    and L. F. Eastman, “Transient Electron
    Transport in Wurtzite GaN, InN, and AlN“,
    J. Appl. Phys., 85, 7727, 1999.

    [12] W. J. Fan, M. F. Li, T. C. Chong, and J. B.
    Xia, “Band Structure Parameters of Zinc-
    blende GaN, AlN and Their Alloys Ga1-
    xAlxN”, Solid State Communications, 97,
    381, 1996.

    [13] Hari Singh Nalwa, “Handbook of thin film
    materials”, ISBN: 0-12-512912-6. Vol.4,
    117-125, 2002.

    [14] S. Nakamura, T. Mukai, and M. Senoh, Jpn.
    J. Appl. Phys., Part 131, 2883 ,1992.

    [15] W. R. Runyan and T. J. Shaffer,
    Semiconductor Measurements and
    Instrumentation, The McGraw-Hill
    Companies,Inc, pp. 386~389.

    [16] Y. S. Zhao, C.L. Jensen, Member, IEEE, R.
    W. Chuang, Member, IEEE, H.P. Lee, Z. J.
    Dong, and R. Shih, “A Simple and Reliable
    Wafer-Level Electrical Probing Technique
    for III-Nitride Light-Emitting Epitaxial
    Structures”, IEEE ELECTRON DEVICE LETTERS,
    VOL. 21, NO. 5, 2000.

    下載圖示 校內:2006-07-21公開
    校外:2006-07-21公開
    QR CODE