| 研究生: |
薛傑仁 Hsueh, Jay-Jen |
|---|---|
| 論文名稱: |
金氧半製程相容之微機電切換式差動電感及其在壓控振盪器的應用 CMOS-Compatible MEMS Switchable Differential Inductor and Its Application to Voltage-Controlled Oscillators |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 壓控振盪器 、微機電後製程 、切換式差動電感 |
| 外文關鍵詞: | switchable differential inductor, MEMS, VCO, 802.11a |
| 相關次數: | 點閱:65 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於一般的射頻通訊系統應用中,壓控振盪器 (VCO) 通常被視為一個關鍵功能方塊,而LC tank最常見到的架構之一,根據所提出的理論,共振腔中的被動元件,尤其是電感,往往決定了壓控振盪器的效能,電磁場的損耗以及在實際CMOS 製程中之寄生效應直接與LC tank儲存能量的能力相關,微機電後製程技術的發展改善了RF應用中的能量損耗之問題,儘管如此,為了配合實際電路,進行蝕刻過程中,整合能力成為另一個需要備考量的關鍵需求。 另一方面,隨著co-existence和超寬頻 (UWB) 系統的發展,對於雙頻帶或寬頻壓控振盪器應用亦隨之成長,切換電容陣列是一種常見的方式以增加頻寬,然而,切換電晶體中的寄生電容限制了操作頻率,這種特性對於某些無線通訊系統來說,造成了一個較高的技術門檻,為了滿足系統應用並同時保有寬頻的特性,切換式電感發展以取代了電容陣列。 為了要滿足上述需求,我們利用微機電製程發展出一個高整合度的切換式差動電感,同時,為了探討後製程所帶來的效應,該電感被置入兩個壓控振盪器的電路中,而規格上皆採用IEEE 802.11a標準並以CIC所提供之1P6M 0.18μm RF CMOS 製程。
For typical RF system communication application, VCO is usually considered as the critical function block. In addition, LC-tank based structure is one of the most common topology for VCO construct. As the theory derived by , resonator in VCO always determines the performance of overall circuit design which is nearly dominated by passive devices, especially inductor. The ability of energy storage of LC-tank is directly related to the loss mechanism of electromagnetic field and parasitic effects of practical CMOS process. The micromachined (MEMS) post-processing is developed to solve the energy loss issues of RF application. Nevertheless, in order to adapt the practical implementation, compatibility is another important consideration while doing etch processing. On the other hands, dual-band or wide-tuning VCO applications are growing dramatically due to the development of co-existence and ultra-wideband (UWB) system. Switch capacitor array (SCA) is a common way to enlarge the total tuning range. However, the parasitic capacitance induced by switching transistors limits the operation frequency. This unfavorable feature makes a high entry-boundary for some wireless communication systems. Thus, to satisfy our application and remain the characteristic of wide-tuning, switchable inductor is invited to replace SCA methodology.
In order to satisfy these demands mentioned in above, we have developed a highly CMOS-compatible MEMS switchable differential inductor. Meanwhile, this proposed inductor was successfully integrated into two VCO vehicles to observe the impact of MEMS post-processing. All the specification of VCO is based on the standard of IEEE 802.11a and was fabricated by 1P6M 0.18μm RF CMOS process provided by CIC.
[1] David K. Cheng “Field and Wave Electromagnetics” Second Edition, Wesley
[2] Jaime Aguliera, Roc Berenguer “Design and Test of Integrated Inductors for RF Applications”
[3] To-Po Wang and Huei Wang “High-Q Micromachined Inductors for 10-to30-GHz RFIC Applications on Low Resistivity Si-Substrate” Proceedings of the 36th European Microwave Conference
[4] J. M. Lopez-Villegas, J. Samitier, C. Cane, P. Losantos and J. Bausells “Improvement of the quality factor of RF integrated inductors by layout optimization” IEEE Transactions on Microwave Theory and Technique, vol. 48,
[5] Hirotaka Sugawara, Hiroyuki Ito etc. “High-Q Variable Inductor Using Redistributed Layers for Si RF Circuit” Topical Meeting on Silicon Monolithic Integrated Circuit in RF System, 2004
[6] Zine-El-Abidine, M. Okoniewski and J. G. McRory “A Tunable RF MEMS Inductor” Proceedings of the 2004 International Conference on MEMS, NANO and Smart System, 2004
[7] Jia-Lun Wang, Yan-Ru Tzeng and Tzuen-His Huang “Integrated Switchable Inductors with Symmetric Differential Layout” Proceedings of Asia-Pacific Microwave Conference 2006
[8] Eun-Chul Park, Euisik Yoon ”A 13GHz CMOS Distributed Oscillator Using MEMS Coupled Transmission Lines for Low Phase Noise” IEEE International Solid-State Circuit Conference, session 16, emerging technologies, 16.8, 2004.
[9] G. K. Fedder, T. Mukherjee ”Tunable RF and Analog Circuits Using On-Chip MEMS Passive Components” IEEE International Solid-State Circuit Conference, session 21, above-IC integration and MM-wave, 21.1, 2005.
[10] Yun-Seok Choi and Jub-Bo Yoon “Experimental Analysis of the Effect of Metal Thickness on the Quality Factor in Integrated Spiral Inductor for RF ICs” IEEE Electron Device Letters vol. 25, no. 2, 2004
[11] Jr-Wei Lin, C. C. Chen and Yu-Ting Cheng “A Robust High-Q Micromachined RF Inductor for RFIC Applications” IEEE Transaction On Electron Device vol.52 no. 7 2005
[12] User’s Handbook – 0.18μm CMOS MEMS Process v.2.0
[13] NDL Measurement Handbook – “Layout Rules for On-Wafer 4-port S-parameters measurement”
[14] C. Patrick Yue, S. Simon Wong “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s” IEEE Journal of Solid-State Circuit, vol. 33, no. 5, 1998
[15] William F. Andress, Donhee Ham “Standing Wave Oscillator Utilizing Wave-Adaptive Tapered Transmission Lines” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, 2005
[16] C. F. Liang, S. L. Liu, Y. H. Chen, T. Y. Yang and G. K. Ma ”A 14-band frequency synthesizer for MB-OFDM UWB application” IEEE International Solid-State Circuit Conference, session 6, UWB transceivers, 6.7, 2006.
[17] W. Kluge, F. Poegel, H. Roller, M. Lange, T. Ferchland, L. Dathe and D. Eggert “A fully integrated 2.4GHz IEEE 802.15.4 compliant transceiver for ZigBee applications” IEEE International Solid-State Circuit Conference, session 20, WLAN/WPAN, 20.7, 2006.
[18] E.C. Park, Y. S. Choi, J. B. Yoon, S. Hong and E. Yoon “Fully integrated low phase-noise VCOs with on-chip MEMS inductors” IEEE Transactions on Microwave Theory and Technique, vol. 51, no. 1 January 2003.
[19] H. C. Chen, C. H Chien, H. W. Chiu, S. S. Lu, K. N. Chang, K. Y. Chen and S. H. Chen “A low-power low phase noise LC VCO with MEMS Cu inductor” IEEE Microwave and Wireless Components Letters, vol. 15, no. 6 June 2005
[20] T. P. Wang, R. C. Liu, H. Y. Chang, L. H. Lu and H. W. Wang “A 22-GHz push-push CMOS oscillator using micromachined inductor” IEEE Microwave and Wireless Components Letters, vol. 15, no. 12 December 2005
[21] J. Aguilera and R. Berenguer “Design and test of integrated indictors for RF applications” Kluwer, 2003
[22] User’s Guide – High Frequency Structure Simulator (HFSS), Ansoft.
[23] User’s Guide – 0.18μm 1P6M CMOS Process, tsmc.
[24] B. Razavi “Design of analog CMOS integrated circuit” McGraw-Hill.
[25] D. Ham and A. Hajimiri “Concepts and methods in optimization of integrated LC VCOs” IEEE Journal of Solid-State Circuit, vol.36, no.6, June 2001.
[26] B. Kung and R. Harjani “High-frequency LC VCO design using capacitive degeneration” IEEE Journal of Solid-State Circuit, vol.39, no.12, December 2004.
[27] User’s Guide – Agilent 5052A SSA Signal Source Analyzer.
[28] Z. Li, Z. Wang, and H. Chen, “A 5-GHz CMOS VCO for IEEE 802.11a WLAN Application,” in Proc. IEEE 7th Int. Conf. on Solid-State and Integrated Circuits Technology, Vol. 2, 18-21 Oct., 2004, pp.1311-1314.
[29] M. –D. Tsai, Y. –H, Cho, and H. Wang, “A 5-GHz Low Phase Noise Differential Colpitts CMOS VCO,” IEEE Microwave and Wireless Components Letters, Vol. 15, no.5, pp. 327-329, May 2005.
[30] P. Delatte, G. Picun, L. Demeus, P. Simom, and D. Flandre, “A Low-Power 5 GHz CMOS LC-VCO Optimized for High-resistivity SOI Substrates,” in Proc. Europe Solid-State Circuit Conference, Grenoble, France, 2005, pp.395-398.
[31] X. Sun et al., “High-Q On-chip Inductors using Thin-Film Wafer Level Packaging Technology Demonstrated on a 90nm RF-CMOS 5GHz VCO,” in Proc. 2005 European Microwave Conference, Vol. 1, 4-6 Oct., 2005.
[32] Hui Wu, Lin Zhang ”A 16-to18GHz 0.18um Epi-CMOS Divide-by-3 Injection-locked Frequency Divider” IEEE 2006 International Solid-State Circuit Conference session 32/ PLLs,VCOs and Dividers/ 32.9
[33] Hui Wu and Ali Hajimiri “A 19GHz 0.5mW 0.35μm CMOS Frequency Divider with Shunt-Peaking Locking-Range Enhancement” 2001 IEEE International Solid-State Circuits Conference
[34] Marc Tiebout “A CMOS Direct Injection-Locked Oscillator Topalogy as High-Frequency Low-Power Frequency Divider”IEEE Journal Of Solid-State Circuit,VOL.39,NO7,July 2004
[35] Steven J. Clendening and Tello D. Adams, “Divide by three clock divider with symmetrical output,” US patent, patent no. 4,366,394. (Dec. 28, 1982)
[36] S. –C. Tseng, C. Meng, and W. –Y. Chen, “True 50% duty-cycle SSH and SHH SiGe BiCMOS divide-by-three Prescaler"IEICE Trans. Electron., vol. E89-C, no. 6, June 2006.