| 研究生: |
董宴忻 Tung, Yen-Hsin |
|---|---|
| 論文名稱: |
上電極面積大小及形狀對 FBAR 元件雜散模態的影響與分析 Investigating the Impact of Area Sizes and Shapes of Top Electrodes on Spurious Modes of FBAR Devices |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 薄膜體聲波諧振器 、FBAR 、雜散模態 、上電極 、氮化鋁壓電薄膜 、反應式射頻磁控濺鍍 |
| 外文關鍵詞: | Film Bulk Acoustic Wave Resonator, FBAR, spurious mode, top electrode, AlN, RF magnetron sputtering |
| 相關次數: | 點閱:58 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分析薄膜體聲波諧振器(Film Bulk Acoustic Wave Resonator, FBAR)的上電極型態和雜散模態之間的關係。製作的 FBAR 元件採用背向空腔架構,在矽基板上使用鉑作為下電極、氮化鋁作為壓電層、鋁作為上電極,最後將元件背部的矽基板蝕刻掉以釋放空腔。本研究中採用了反應式射頻磁控濺鍍方法來沉積氮化鋁壓電薄膜,使薄膜有高 C 軸優選取向,確保其具有良好的壓電特性,能夠在元件內部激發縱向聲波。首先透過製作 19600、14400、10000、6400μm² 四種不同正方形面積的上電極 FBAR 元件,量測的 S 參數結果中,19600、14400μm² 皆無觀察到額外的雜散模態,面積為 10000μm² 時,會觀察到明顯的雜散模態,因此將以面積 10000μm²做為後續實驗的參考依據。接著以相同條件下,製作圓形、五邊形兩種不同電極形狀的 FBAR 元件,在面積10000μm² 的形態下,量測的 S 參數結果中,並沒有觀察到明顯的雜散模態,這個結果顯示非正方形的上電極形態能夠抑制雜散模態的激發。當以相同的結構與材料製作FBAR 元件時,面積 10000μm²為是否觀察到明顯雜散模態的參考面積,若大於此參考面積,則三種形狀皆適用;若小於,則正方形不適合使用。
This thesis investigates the relationship between the top electrode configuration and spurious modes in Film Bulk Acoustic Wave Resonators (FBARs). The fabricated FBAR devices employ a back-etched cavity structure. The silicon substrate at the device's rear is etched to create a cavity release. Platinum is used as the bottom electrode on a silicon substrate, and aluminum nitride functions as the piezoelectric layer. For the deposition of the aluminum nitride piezoelectric thin film, reactive RF magnetron sputtering is used. Aluminum is then utilized as the top electrode. In the square FBAR device with an area of 10,000 μm², the presence of spurious modes is observed, and this area serves as a reference for detecting their occurrence. No spurious modes are observed when the shape is adjusted to circular and pentagonal with an area of 10,000 μm². Hence, non-square shapes contribute to the suppression of spurious modes.
[1] Y. Liu, Y. Cai, Y. Zhang, A. Tovstopyat, S. Liu, and C. Sun, "Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review," Micromachines (Basel), vol. 11, no. 7, Jun 28 2020, doi: 10.3390/mi11070630.
[2] Z. Zhang, Y. Lu, W. Pang, D. Zhang, and H. Zhang, "A high performance C-band FBAR filter," in 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 2013: IEEE, pp. 923-926.
[3] P. K. Joshi, L. H. Bhalotiya, S. W. Jaiswal, V. W. Butram, M. A. Hasamnis, and S. Upadhyay, "Design and modelling of thin film bulk acoustic resonator (FBAR) for RF application," Materials Today: Proceedings, vol. 73, pp. 50-53, 2023, doi: 10.1016/j.matpr.2022.09.167.
[4] N. Ashraf, Y. Mesbah, A. Emad, and H. Mostafa, "Enabling the 5g: Modelling and design of high q film bulk acoustic wave resonator (fbar) for high frequency applications," in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020: IEEE, pp. 1-4.
[5] A. Link, E. Schmidhammer, H. Heinze, M. Mayer, B. Bader, and R. Weigel, "Appropriate Methods to Suppress Spurious FBAR Modes in Volume Production," in 2006 IEEE MTT-S International Microwave Symposium Digest, 2006, pp. 394-397.
[6] S. Taniguchi, T. Yokoyama, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, "an air-gap type FBAR filter fabricated using a thin sacrificed layer on a flat substrate," in 2007 IEEE Ultrasonics Symposium Proceedings, 2007: IEEE, pp. 600-603.
[7] Y. Kumar, J. Singh, G. Kumari, R. Singh, and J. Akhtar, "Effect of shapes and electrode material on figure of merit (FOM) of BAW resonator," in AIP Conference Proceedings, 2016, vol. 1724, no. 1: AIP Publishing.
[8] Y. Q. Fu et al., "Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications," Progress in Materials Science, vol. 89, pp. 31-91, 2017.
[9] H. Cheng, Y. Sun, and P. Hing, "Microstructure evolution of AlN films deposited under various pressures by RF reactive sputtering," Surface and coatings technology, vol. 166, no. 2-3, pp. 231-236, 2003.
[10] C. Fei et al., "AlN piezoelectric thin films for energy harvesting and acoustic devices," Nano Energy, vol. 51, pp. 146-161, 2018, doi: 10.1016/j.nanoen.2018.06.062.
[11] A. Ababneh, U. Schmid, J. Hernando, J. L. Sánchez-Rojas, and H. Seidel, "The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films," Materials Science and Engineering: B, vol. 172, no. 3, pp. 253-258, 2010.
[12] S. Mahon and R. Aigner, "Bulk Acoustic Wave Devices–-Why How and Where They are Going," in CS Mantech Conference, 2007, pp. 15-18.
[13] J. H. Jung, Y. H. Lee, J. H. Lee, and H. C. Choi, "Vibration mode analysis of RF film bulk acoustic wave resonator using finite element method," in 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 01CH37263), 2001, vol. 1: IEEE, pp. 847-850.
[14] J.-H. Lee, C.-M. Yao, K.-Y. Tzeng, C.-W. Cheng, and Y.-C. Shih, "Optimization of Frame-like Film Bulk Acoustic Resonators for Suppression of Spurious Lateral Modes Using Finite Element Method " in IEEE Ultrasonics Symposium, 2004, 2004, vol. 1: IEEE, pp. 278-281.
[15] R. Ruby, J. Larson, C. Feng, and S. Fazzio, "The Effect of Perimeter Geometry on FBAR Resonator Electrical Performance," presented at the IEEE MTT-S International Microwave Symposium Digest, 2005., 2005.
[16] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices. 1988.
[17] P. Dineva et al., Piezoelectric materials. Springer, 2014.
[18] S. Katzir, "The discovery of the piezoelectric effect," The Beginnings of Piezoelectricity: A Study in Mundane Physics, pp. 15-64, 2006.
[19] P. A. Carlos P. Bergmann, Brazil, IEEE Standard on Piezoelectricity. 1988.
[20] L. Qin, Q. Chen, H. Cheng, and Q.-M. Wang, "Analytical study of dual-mode thin film bulk acoustic resonators FBARs based on ZnO and AlN films with tilted c-axis orientation," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 8, pp. 1840-1853, 2010.
[21] 吳朗, 電子陶瓷: 壓電陶瓷. 全欣, 1994.
[22] K.-W. Tay, C.-L. Huang, and L. Wu, "Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics," Japanese Journal of Applied Physics, vol. 43, no. 3R, 2004.
[23] A. Iqbal and F. Mohd-Yasin, "Reactive Sputtering of Aluminum Nitride (002) Thin Films for Piezoelectric Applications: A Review," Sensors (Basel), vol. 18, no. 6, Jun 2 2018, doi: 10.3390/s18061797.
[24] X.-H. Xu, H.-S. Wu, C.-J. Zhang, and Z.-H. Jin, "Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering," Thin solid films, vol. 388, no. 1-2, pp. 62-67, 2001.
[25] C. C. W. Ruppel, "Acoustic Wave Filter Technology-A Review," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 64, no. 9, pp. 1390-1400, Sep 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/28391194.
[26] S. Taniguchi, T. Yokoyama, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, "7E-1 an air-gap type FBAR filter fabricated using a thin sacrificed layer on a flat substrate," in 2007 IEEE Ultrasonics Symposium Proceedings, 2007: IEEE, pp. 600-603.
[27] C. P. Wen, "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087-1090, 1969.
[28] T. Chao, Introduction To Semiconductor Manufacturing Technology. Prentice Hall, 2000.
[29] J. G. E. Gardeniers, H. A. C. Tilmans, and C. C. G. Visser, "LPCVD silicon‐rich silicon nitride films for applications in micromechanics, studied with statistical experimental design," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 14, no. 5, pp. 2879-2892, 1996.
[30] N. I. M. Nor, Y. W. Jing, and N. Khalid, "Characteristics of film bulk acoustic wave resonator using different electrode materials," presented at the Proceedings of 8th International Conference on Advanced Materials Engineering & Technology (Icamet 2020), 2021.
[31] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama, and T. Yamada, "Influence of metal electrodes on crystal orientation of aluminum nitride thin films," Vacuum, vol. 74, no. 3-4, pp. 699-703, 2004.
[32] Y. Kumar, K. Rangra, and R. Agarwal, "Design and Simulation of FBAR for Quality Factor Enhancement," Mapan, vol. 32, no. 2, pp. 113-119, 2017.
[33] M. D. Terzieva, "Overview of bulk acoustic wave technology and its applications," Electrotechnica & Electronica (E+ E), vol. 51, 2016.
[34] M. M. Torunbalci, T. J. Odelberg, S. Sridaran, R. C. Ruby, and S. A. Bhave, "An FBAR Circulator," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 395-397, 2018, doi: 10.1109/lmwc.2018.2815271.
[35] N. Nor et al., "The influence of design parameters on the performance of FBAR in 15–19 GHz," in AIP conference proceedings, 2018, vol. 2045, no. 1: AIP Publishing, doi: 10.1063/1.5080901.
[36] D. A. Feld, R. Parker, R. Ruby, P. Bradley, and S. Dong, "After 60 years: A new formula for computing quality factor is warranted," presented at the 2008 IEEE Ultrasonics Symposium, 2008.
[37] I. S. Uzunov, M. D. Terzieva, B. M. Nikolova, and D. G. Gaydazhiev, "Extraction of modified butterworth—Van Dyke model of FBAR based on FEM analysis," in 2017 XXVI international scientific conference electronics (ET), 2017: IEEE, pp. 1-4.
[38] C.-M. Yang, K. Uehara, S.-K. Kim, S. Kameda, H. Nakase, and K. Tsubouchi, "Highly c-axis oriented AlN_film using MOCVD for 5GHz-band FBAR filter," in IEEE Symposium on Ultrasonics, 2003, 2003: IEEE, pp. 170-173.
[39] Y. Zhang and D. Chen, Multilayer Integrated Film Bulk Acoustic Resonators. Shanghai Jiao Tong University Press, 2013.
[40] F. Z. Bi and B. P. Barber, "11E-0 improve MBVD model to consider frequency dependent loss for baw filter design," in 2007 IEEE Ultrasonics Symposium Proceedings, 2007: IEEE, pp. 1025-1028.
[41] G. Piazza, P. Stephanou, J. Black, R. White, and A. Pisano, "Single-chip multiple-frequency RF microresonators based on aluminum nitride contour-mode and FBAR technologies," in IEEE Ultrasonics Symposium, 2005., 2005, vol. 2: IEEE, pp. 1187-1190.
[42] R. Ruby, J. Larson, C. Feng, and S. Fazzio, "The effect of perimeter geometry on FBAR resonator electrical performance," in IEEE MTT-S International Microwave Symposium Digest, 2005., 2005: IEEE, pp. 217-220.
[43] Q. Su, P. Kirby, E. Komuro, and R. Whatmore, "Edge supported ZnO thin film bulk acoustic wave resonators and filter design," in Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No. 00CH37052), 2000: IEEE, pp. 434-440.
[44] I. Petrov, P. Barna, L. Hultman, and J. Greene, "Microstructural evolution during film growth," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, no. 5, pp. S117-S128, 2003.
[45] 楊啟榮, "蒸鍍技術," 國立台灣師範大學 機電科技學系.
[46] H. Cheng, Y. Sun, and P. Hing, "The influence of deposition conditions on structure and morphology of aluminum nitride films deposited by radio frequency reactive sputtering," Thin Solid Films, vol. 434, no. 1-2, pp. 112-120, 2003, doi: 10.1016/s0040-6090(03)00428-0.
[47] B. Joshi, G. Eranna, D. Runthala, B. Dixit, O. Wadhawan, and P. Vyas, "LPCVD and PECVD silicon nitride for microelectronics technology " Indian Journal of Engineering & Materials Sciences, pp. 303-309, 2000.
[48] N. Sharma, M. Hooda, and S. K. Sharma, "Synthesis and Characterization of LPCVD Polysilicon and Silicon Nitride Thin Films for MEMS Applications," Journal of Materials, vol. 2014, pp. 1-8, 2014, doi: 10.1155/2014/954618.
[49] M. Huff, "Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication," Micromachines (Basel), vol. 12, no. 8, Aug 20 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/34442613.
[50] K. R. Williams and R. S. Muller, "Etch rates for micromachining processing," Journal of microelectromechanical systems, vol. 5, no. 4, pp. 256-269, 1996.
[51] K. Biswas and S. Kal, "Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon," Microelectronics Journal, vol. 37, no. 6, pp. 519-525, 2006.
[52] 林威宇, "利用質量負載效應實現二階 FBAR 射頻濾波器之研究," 國立成功大學, 2022.
[53] 羅文良, "FBAR 電極質量負載效應計算方法之探析與實證," 國立成功大學, 2022.