簡易檢索 / 詳目顯示

研究生: 李昱霆
Lee, Yu-Ting
論文名稱: 利用潛堤減少長波溯升之試驗研究
Mitigation of long wave run-up using submerged breakwaters
指導教授: 黃煌煇
Hwung, Hwung-Hweng
共同指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 103
中文關鍵詞: 孤立波溯升潛堤BIV
外文關鍵詞: solitary wave, run-up, breakwater, BIV
相關次數: 點閱:73下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣四面環海,位處於環太平洋地震帶上,地震頻繁發生;觀察周遭海底地形,台灣東北以及西南海域,因地形較平緩遼闊,適合海嘯傳遞、淺化等過程,為易受海嘯災害之高潛勢區。回顧2011年日本東北地震所引發巨大規模的海嘯,海嘯長波無視沿岸巨大海堤越波後,繼續往內陸溯升漫淹,造成人民的死傷以及建築財產的受損,發人深省! 而因應此類長波的災害,前人提出潛沒式堤防的概念,但其堤防皆建築於平底床上,參考真實海底地形,本實驗嘗試將堤防建置於斜坡上,探討斜坡上的潛沒式堤防消減長波溯升的效用。本次試驗於成功大學水工試驗所精密流力造波水槽進行,以坡度1/20來建置實驗斜坡,並以孤立波來模擬海嘯長波,實驗的主題為利用潛堤減少長波之波能;將低於水面的堤防建築於斜坡上,一方面反射部分波能,另一方面促使長波發生碎波,碎波時混入大量空氣產生紊流渦旋進一步衰減波能。試驗中利用溯升高度作為依據判斷堤防的效用。經試驗最佳效益能夠衰減約70%(hs=0 cm、Xb= 0 cm、ε= 0.11),而雙堤的試驗最佳效益為90%(hs=0 cm、Xb= 0、112 cm、ε= 0.11),說明斜坡上潛沒式堤防在衰減長波上有其功用,能夠達到減少長波溯升,減少海嘯漫淹區域。 除了量測孤立波溯升的衰減外,實驗亦以氣泡影相測速儀(BIV, Bubble Image Velocimetry)量測碎波區之流體速度。BIV系統架設於碎波帶,藉由可視化並量化流場的速度,討論潛堤在消減孤立波後,碎波延斜坡溯升時的速度變化,由速度的變化來計算潛堤消減的波能。 關鍵字:孤立波、溯升、潛堤、BIV

    SUMMARY
    Taiwan is an island located in the Ring of Fire such that earthquakes occurred frequently. Observing the surrounding seabed topography, northeast and southwest coastal area of Taiwan is relatively gentle and extensively flat, which is suitable for the shoaling and amplification processes of tsunamis, which means that Taiwan is a high potential area of tsunami catastrophe. Recalling the 2004 India Ocean tsunami and the 2011 Tohoku earthquake tsunami, tsunami were caused by mega scale earthquakes that brought tremendous catastrophe in the disaster regions. It is thus of great importance to develop innovative approach to achieve the reduction and mitigation of tsunami hazards.
    We propose a concept of using multiple submerged breakwaters to mitigate tsunami-like long wave by means of solitary waves. However, previous investigations of submerged breakwaters under long waves considered that the target obstacles built on a flat bottom. In this study, we installed submerged breakwaters on a mild slope instead to discuss the possible mitigation of run-up heights. Experiments were performed in a glass-walled wave tank located at the Tainan Hydraulics Laboratory, National Cheng Kung University. The slope is 1/20 and solitary waves is used to simulate extremely long wave such as tsunami due to its hydraulics similarity. The subject of this study is to use submerged breakwaters to mitigate long wave energy, enhance the breaking processes due to shoaling and, in part, to reflect the incoming wave due to the presence of obstacle. When waves are breaking, lots of air bubbles were entrained into the testing fluid and the fluid becomes turbulent. By this process, submerged breakwaters once again reduce long wave energy. In this study, we used Max. run-up heights to judge different scenario’s utility.
    When waves are breaking, lots of air bubbles were entrained into the testing fluid making the fluid to be turbulent, in this way, submerged breakwaters will further reduce the wave energy of incoming waves. Here, we use maximum run-up heights to judge the capabilities of different configuration of breakwaters. The optimal single breakwater scenario in our teat can mitigate about 70% run-up height (hs= 0 cm, Xb= 0 cm, ε=0.11), and best dual breakwater scenario is 90% (hs= 0 cm, Xb= 0&112 cm, ε= 0.11).Therefore, submerged breakwaters are indeed possible to reduce long-wave energy.
    In addition, we use a state-of-the-art measuring technique Bubble Image Velocimetry, which features non-intrusive and image-based measurement. The measured wave kinematics in the highly aerated region due to solitary-wave shoaling, breaking and uprush can be quantitated. The measured results in terms of velocities will be used to complete the conjunction with run-up height reduction.
    Key words: solitary wave, run-up, breakwater, BIV

    目錄 摘要 I 誌謝 IX 目錄 X 圖目錄 XIII 相片目錄 XVII 表目錄 XVIII 符號表 XIX 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 第二章 文獻回顧 4 2-1 海嘯災害 4 2-2 潛堤 5 2-4 孤立波溯升 9 2-4-1 理論分析 9 2-4-2 實驗回顧 10 2-4-3 數值模式 11 2-5 氣泡影像測速儀 12 第三章 試驗布置與方法 15 3-1 試驗器材與布置 15 3-1-1 試驗設備 15 3-1-2 試驗儀器配置 19 3-1-3 試驗潛堤模型 21 3-2 試驗條件 22 3-2-1 溯升高度試驗條件 22 3-2-2 氣泡影像測速儀試驗條件 26 3-3 試驗儀器較正率定 28 3-3-1 波高計率定 28 3-3-2 孤立波波形驗證 30 3-4 試驗方法 32 3-4-1 氣泡影像測速儀 32 3-4-2 溯升高度量測 38 3-5 試驗誤差及重現性 42 第四章 試驗結果與討論 45 4-1 實驗結果 45 4-1-1 無潛堤溯升試驗結果與比較 45 4-1-2 單道潛沒式堤防 50 4-1-3 雙道潛沒式堤防 59 4-2 氣泡影像測速儀 65 第五章 結論與建議 98 5-1 結論 98 5-2 建議 99 參考文獻 101

    參考文獻
    [1] Adrian, R.J., 1991. Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics 23, 261-304.
    [2] Boussinesq, J., 1872. Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées. Deuxième Série 17, 55-108.
    [3] Carrier, G.F., Greenspan, H.P., 1958. Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics 4(01), 97-109.
    [4] Chang, K.A., Liu, P.L.F., 1998. Velocity, acceleration and vorticity under a breaking wave. Physics of Fluids 10(1), 327-329.
    [5] Goring, D.G., 1978. Tsunamis-the propagation of long waves onto a shelf. Ph.D. Thesis, California Institute of Technology, Pasadena, California.
    [6] Grilli, S.T., Svendsen, I.A., Subramanya, R., 1997. Breaking criterion and characteristics for solitary waves on slopes. Journal of Waterway, Port, Coastal, and Ocean Engineering 123(3), 102-112.
    [7] Grimshaw, R., 1971. The solitary wave in water of variable depth. Part 2. Journal of Fluid Mechanics 46(3), 611-622.
    [8] Hall, J.V., Watts, G.M., 1953. Laboratory investigation of the vertical rise of solitary waves on impermeable slopes. Technical Report, DTIC Document.
    [9] Hsiao, S.-C., Hsu, T.-W., Lin, T.-C., Chang, Y.-H., 2008. On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coastal Engineering 55(12), 975-988.
    [10] Huang, C.-J., Chang, H.-H., Hwung, H.-H., 2003. Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engineering 49(1-2), 1-24.
    [11] Hwung, H.H., Chiang, W.S., 2005. Measurements of wave modulation and breaking. Meas. Sci. Technol. 16, 1921-1928.
    [12] Irtem, E., Seyfioglu, E., Kabdasli, S., 2011. Experimental investigation on the effects of submerged breakwaters on tsunami run-up height. Journal of Coastal Research SI 64, 516 - 520.
    [13] Irtem, E., Seyfioglu, E., Kabdasli, S., 2012. Comparison of the effects of permeable, impermeable and monolithic vertical-face submerged breakwaters on tsunami run-up height. Proceedings of the Twenty-second (2012) International Offshore and Polar Engineering Conference.
    [14] Jayaratne, R., Mikami, T., Esteban, M., Shibayama, T., 2011. Investagation of coastal structure failures due to the 2011 great eastern Japan earthquake tsunami.
    [15] Jahromi,B.E., Sidek, F.J., 2010. Conceptualization of submerged structures as tsunami barrier. Malaysian Journal of Civil Engineering 22(1), 83-94.
    [16] Keller, J.B., Keller, H.B., 1964. Water wave run-up on a beach. PNR Research Rep. NR-3828(00) Dep. of the Navy, Washington, D. C.
    [17] Klinting, P., Svendsen, I.A., 1974. A discussion of the characteristic horizontal lengths in long waves. Progress Rep. 34, Inst. Hydrodyn. and Hydr. Engrg., Tech. Univ. of Denmark, 11-17.
    [18] Lin, C., Ho, T.-C., Chang, S.-C., Hsieh, S.-C., Chang, K.-A., 2005. Vortex shedding induced by a solitary wave propagating over a submerged vertical plate. International Journal of Heat and Fluid Flow 26(6), 894-904.
    [19] Lin, C., Chang, S.-C., Ho, T.C., Chang, K.-A., 2006. Laboratory observation of solitary wave propagating over a submerged rectangular dike. Journal of Engineering Mechanics 132(5), 545-554.
    [20] Lin, C., Hsieh, S.-C., Lin, I.-J., Chang, K.-A., Raikar, R., 2012a. Flow property and self-similarity in steady hydraulic jumps. Experiments in Fluids 53(5), 1591-1616.
    [21] Lin, C., Hsieh, S., Lin, W., Raikar, R., 2012b. Characteristics of recirculation zone structure behind an impulsively started circular cylinder. Journal of Engineering Mechanics 138(2), 184-198.
    [22] Lo, H.Y., 2013. the Faculty of the Graduate School of Cornell University, U.S.A.
    [23] Mori, N., Cox, D.T., Yasuda, T., Mase, H., 2013. Overview of the 2011 tohoku earthquake tsunami damage and its relation to coastal protection along the sanriku coast. Earthquake Spectra 29(S1), S127-S143.
    [24] Mori, N., Takahashi, T., Yasuda, T., Yanagisawa, H., 2011. Survey of 2011 tohoku earthquake tsunami inundation and run-up. Geophyscial Research Letters 38, L00G14.
    [25] Ray, S.D., 2002. Applied photographic optics. (Oxford: Focal) 215-33.
    [26] Rivillas-Ospina, G., Pedrozo-Acuña, A., Silva, R., Torres-Freyermuth, A., Gutierrez, C., 2011. Estimation of the velocity field induced by plunging breakers in the surf and swash zones. Experiments in Fluids 52(1), 53-68.
    [27] Ryu, Y., Chang, K.-A., Lim, H.-J., 2005. Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Meas. Sci. Technol. 16, 1945-1853.
    [28] Synolakis, C.E., 1987. The runup of solitary waves. Journal of Fluid Mechanics 185, 523-545.
    [29] Wu, Y.-T., Hsiao, S.-C., 2013. Turbulence induced by a solitary wave propagating over a submerged object using particle image velocimetry. J. Coast. Res. Special Issue 65(1), 416-421.
    [30] Wu, Y.-T., Hsiao, S.-C., Huang, Z.-C., Hwang, K.-S., 2012. Propagation of solitary waves over a bottom-mounted barrier. Coastal Engineering 62, 31-47.
    [31] Wu, Y.-T., Hsiao, S.-C., Yang, R.-Y., Hwung, H.-H., 2015. Mitigation of long waves by means of submerged artificial breakwaters built upon a mild-slope beach - a numerical study. Proceeding of the 25th International Offshore and Polar Engineering Conference (ISOPE) , Vol. 3, 1431-1437., Kona, Big Island, Hawaii, USA.
    [32] Yeh,H.,Abdulhamid, G., Ingunn M., 1989. Experimental study of bore run-up. J . Fluid Mech. (1989), vol.206, pp . 563-578
    [33] 林呈(1989) 應用流場可視化法及LDV探討斜坡上波動內部流場及底部邊界層之特性,國立成功大學水利及海洋工程研究所博士論文。
    [34] 林呈(2010) 孤立波於斜坡底床上波動邊界層流場之實驗研究,第32 屆海洋工程研討會論文集
    [35] 黃志誠(2010) 碎波帶動力以及紊流特性之試驗研究,國立成功大學水利及海洋工程研究所博士論文
    [36] 許雄昂(2011) 孤立波通過長方形潛沒板之流場特性研究,國立成功大學水利及海洋工程研究所碩士論文
    [37] 萬竣翔(2013) 複合型海堤之越波流場研究,國立成功大學水利及海洋工程研究所碩士論文

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE