簡易檢索 / 詳目顯示

研究生: 張閎耆
Chang, Hung-Chi
論文名稱: 以超音波噴霧熱裂解沉積法製備高性能鋅錫氧化物薄膜電晶體之研究
Investigations of High-Performance Zinc-Tin-Oxide Thin-Film Transistor by Ultrasonic Spray Pyrolysis Deposition
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 106
中文關鍵詞: 鋅錫氧化物微結晶超音波噴霧熱裂解沉積法永續發展高性能低生產成本透明氧化物半導體寬能隙
外文關鍵詞: Zinc Tin Oxide, ZTO, nanocrystalline, Ultrasonic Spray Pyrolysis Deposition, sustainable development, high performance, low production cost, transparent oxide semiconductor, wide bandgap
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以超音波噴霧熱裂解沉積法製備底閘極微結晶型鋅錫氧化物薄膜電晶體。本篇探討超音波噴霧熱裂解沉積法與鋅錫氧化物之優勢所在:在薄膜電晶體的應用與需求日益增加下,如何使用環境永續、降低生產成本的製作方式會是一個重要的研究方向。本篇中元件最佳電性為:操作在線性區時,元件可達到場效電子遷移率 68.19 cm^2/V-s、開關比~10^7、次臨界擺幅 96.81 mV/dec 與臨界電壓(定電流法) 0.07 V;在飽和區,場效電子遷移率 123.56 cm^2/V-s、開關比~10^6、次臨界擺幅 192.39 mV/dec、臨界電壓(定電流法) 0.21 V 與(切線法) 0.33 V。

    In this thesis, the bottom-gate nanocrystalline zinc-tin oxide thin film transistors were fabricated by ultrasonic spray pyrolysis deposition (USPD). This article introduces the advantages of ultrasonic spray pyrolysis deposition and zinc tin oxide: As application and demand increase for thin-film transistors, how to use environmentally sustainable fabrication methods and reduce production costs will be an important research direction. The optimal electrical performance of the device in this thesis is: when operating in the linear region, the device can reach field-effect electron mobility (μeff,lin) of 68.19 cm^2/V-s, an on-off ratio (Ion/Ioff) of ~10^7, subthreshold swing (S.S.) of 96.81 mV/dec, and a threshold voltage (constant current method)(Vth) 0.07 V; in the saturation region, the field-effect electron mobility (μeff,sat) of 123.56 cm^2/V-s, an on-off ratio of ~10^6, the subthreshold swing of 192.39 mV/dec, the threshold voltage (constant current method) (Vth) of 0.21 V and (tangent method)(Vth,tangent) 0.33 V

    摘要 i Abstract ii 誌謝 iv Content viii Table Captions x Figure Captions xii Chapter 1 Introduction and Motivation 1 1-1 Background 1 1-2 Zinc Tin Oxide (ZTO) 7 1-3 Ultrasonic Spray Pyrolysis Deposition (USPD) 13 1-4 Methodology and Faith of Experiment 19 1-5 Organization 20 Chapter 2 Material Growth and Devices Fabrication 21 2-1 Device Structure and Fabrication 21 2-1-1 Substrate Cleaning (ITO on glass) 22 2-1-2 Fabrication of Gate Dielectric Layer (Al2O3) 23 2-1-3 Fabrication of Active Layer (ZnSnO) 24 2-1-4 Device Isolation 25 2-1-5 Source/Drain Electrode Deposition (Al) 25 2-2 Annealing Method 26 2-2-1 O2 Annealing 26 2-2-2 Wet Annealing 26 Chapter 3 Results and Discussion 31 3-1 Material Analysis 31 3-1-1 X-ray Photoelectron Spectroscopy (XPS) 31 3-1-2 High-Resolution Scanning Electron Microscopy (HR-SEM) 36 3-1-3 X-ray Diffraction (XRD) 47 3-1-4 Photoluminescence (PL) 52 3-1-5 Secondary Ion Mass Spectrometry (SIMS) 55 3-1-6 Spectrophotometry 57 3-1-7 High-Resolution Transmission Electron Microscopy (HR-TEM) 63 3-1-8 Summary of Material Analysis 65 3-2 DC Electric Characteristics 67 3-2-1 Cl-Based ZTO 70 3-2-2 Acetate-Based ZTO 74 3-2-3 Mix-Drug-Based ZTO 78 3-2-4 DC Electric Characteristics Comparison and Summary 82 3-3 Device Stability 87 3-3-1 Hysteresis 87 3-3-2 Negative Bias Illumination Stress Test (NBIS) 90 Chapter 4 Conclusion and Future work 94 4-1 Conclusion 94 4-2 Suggestions for Future Work 97 References 98

    [1] Y. Hara, T. Kikuchi, H. Kitagawa, J. Morinaga, H. Ohgami, H. Imai, T. Daitoh, and T. Matsuo, "IGZO-TFT technology for large-screen 8K display," J. Soc. Inf. Disp., Article vol. 26, no. 3, pp. 169-177, Mar 2018, doi: 10.1002/jsid.648.
    [2] H. T. Lue, T. H. Hsu, Y. H. Hsiao, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, S. Y. Wang, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, and C. Y. Lu, "A highly scalable 8-layer 3D vertical-gate (VG) TFT NAND Flash using junction-free buried channel BE-SONOS device," in 2010 Symposium on VLSI Technology, Jun 2010, pp. 131-132, doi: 10.1109/VLSIT.2010.5556199.
    [3] K. Kaneko, N. Inoue, S. Saito, N. Furutake, and Y. Hayashi, "A novel BEOL transistor (BETr) with InGaZnO embedded in Cu-interconnects for on-chip high voltage I/Os in standard CMOS LSIs," in 2011 Symposium on VLSI Technology - Digest of Technical Papers, 14-16 June 2011, pp. 120-121.
    [4] S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd Edition. WILEY, 2012.
    [5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, Article vol. 432, no. 7016, pp. 488-492, Nov 2004, doi: 10.1038/nature03090.
    [6] T. Kamiya, K. Nomura, and H. Hosono, "Subgap states, doping and defect formation energies in amorphous oxide semiconductor a-InGaZnO4 studied by density functional theory," Phys. Status Solidi A-Appl. Mat., Article; Proceedings Paper vol. 207, no. 7, pp. 1698-1703, Jul 2010, doi: 10.1002/pssa.200983772.
    [7] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids, Article; Proceedings Paper vol. 352, no. 9-20, pp. 851-858, Jun 2006, doi: 10.1016/j.jnoncrysol.2006.01.073.
    [8] E. Fortunato, P. Barquinha, and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances," Adv. Mater., Review vol. 24, no. 22, pp. 2945-2986, Jun 2012, doi: 10.1002/adma.201103228.
    [9] J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, "Review of recent developments in amorphous oxide semiconductor thin-film transistor devices," Thin Solid Films, Review vol. 520, no. 6, pp. 1679-1693, Jan 2012, doi: 10.1016/j.tsf.2011.07.018.
    [10] T. Matsuda, K. Umeda, Y. Kato, D. Nishimoto, M. Furuta, and M. Kimura, "Rare-metal-free high-performance Ga-Sn-O thin film transistor," Sci Rep, Article vol. 7, p. 7, Mar 2017, Art no. 44326, doi: 10.1038/srep44326.
    [11] R. G. Gordon, "Criteria for choosing transparent conductors," MRS Bull., Article vol. 25, no. 8, pp. 52-57, Aug 2000, doi: 10.1557/mrs2000.151.
    [12] C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, and P. Barquinha, "A sustainable approach to flexible electronics with zinc-tin oxide thin-film transistors," Adv. Electron. Mater., Article vol. 4, no. 7, p. 10, Jul 2018, Art no. 1800032, doi: 10.1002/aelm.201800032.
    [13] K. M. Niang, J. Cho, S. Heffernan, W. I. Milne, and A. J. Flewitt, "Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering," J. Appl. Phys., Article vol. 120, no. 8, p. 10, Aug 2016, Art no. 085312, doi: 10.1063/1.4961608.
    [14] S. Yamazaki, "Crystalline oxide semiconductor using CAAC-IGZO and its application," ECS Transactions, vol. 64, no. 10, pp. 155-164, 2014/08/05 2014, doi: 10.1149/06410.0155ecst.
    [15] J. K. Saha, R. N. Bukke, N. N. Mude, and J. Jang, "Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors," Sci Rep, Article vol. 10, no. 1, p. 11, Jun 2020, Art no. 8999, doi: 10.1038/s41598-020-65938-6.
    [16] D. D. Han, Y. Zhang, Y. Y. Cong, W. Yu, X. Zhang, and Y. Wang, "Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate," Sci Rep, Article vol. 6, p. 6, Dec 2016, Art no. 38984, doi: 10.1038/srep38984.
    [17] A. V. Glushkova, H. F. W. Dekkers, M. Nag, J. I. D. Borniquel, J. Ramalingam, J. Genoe, P. Heremans, and C. Rolin, "Systematic study on the amorphous, c-axis-aligned crystalline, and protocrystalline phases in In-Ga-Zn oxide thin-film transistors," ACS Appl. Electron. Mater., Article vol. 3, no. 3, pp. 1268-1278, Mar 2021, doi: 10.1021/acsaelm.0c01091.
    [18] C. R. Allemang, T. H. Cho, O. Trejo, S. Ravan, R. E. Rodriguez, N. P. Dasgupta, and R. L. Peterson, "High-performance zinc tin oxide TFTs with active layers deposited by atomic layer deposition," Adv. Electron. Mater., Article vol. 6, no. 7, p. 10, Jul 2020, Art no. 2000195, doi: 10.1002/aelm.202000195.
    [19] X. G. Yu, T. J. Marks, and A. Facchetti, "Metal oxides for optoelectronic applications," Nat. Mater., Review vol. 15, no. 4, pp. 383-396, Apr 2016, doi: 10.1038/nmat4599.
    [20] A. Liu, H. H. Zhu, H. B. Sun, Y. Xu, and Y. Y. Noh, "Solution processed metal oxide high-kappa dielectrics for emerging transistors and circuits," Adv. Mater., Review vol. 30, no. 33, p. 39, Aug 2018, Art no. 1706364, doi: 10.1002/adma.201706364.
    [21] S. K. Garlapati, M. Divya, B. Breitung, R. Kruk, H. Hahn, and S. Dasgupta, "Printed electronics based on inorganic semiconductors: From processes and materials to devices," Adv. Mater., Review vol. 30, no. 40, p. 55, Oct 2018, Art no. 1707600, doi: 10.1002/adma.201707600.
    [22] J. W. Park, B. H. Kang, and H. J. Kim, "A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics," Adv. Funct. Mater., Review vol. 30, no. 20, p. 40, May 2020, Art no. 1904632, doi: 10.1002/adfm.201904632.
    [23] S. Park, C. H. Kim, W. J. Lee, S. Sung, and M. H. Yoon, "Sol-gel metal oxide dielectrics for all-solution-processed electronics," Mater. Sci. Eng. R-Rep., Review vol. 114, pp. 1-22, Apr 2017, doi: 10.1016/j.mser.2017.01.003.
    [24] J. L. Shi, J. Y. Zhang, L. Yang, M. Qu, D. C. Qi, and K. H. L. Zhang, "Wide bandgap oxide semiconductors: From materials physics to optoelectronic devices," Adv. Mater., Review; Early Access p. 30, 2021, Art no. 2006230, doi: 10.1002/adma.202006230.
    [25] G. Wang, B. Z. Chang, H. Yang, X. L. Zhou, L. T. Zhan, X. D. Zhang, and S. D. Zhang, "Implementation of self-aligned top-gate amorphous zinc tin oxide thin-film transistors," IEEE Electron Device Lett., Article vol. 40, no. 6, pp. 901-904, Jun 2019, doi: 10.1109/led.2019.2910462.
    [26] P. Schlupp, F. L. Schein, H. von Wenckstern, and M. Grundmann, "All amorphous oxide bipolar heterojunction diodes from abundant metals," Adv. Electron. Mater., Article vol. 1, no. 1-2, p. 5, Feb 2015, Art no. 1400023, doi: 10.1002/aelm.201400023.
    [27] Y. Son, A. Liao, and R. L. Peterson, "Effect of relative humidity and pre-annealing temperature on spin-coated zinc tin oxide films made via the metal-organic decomposition route," J. Mater. Chem. C, Article vol. 5, no. 32, pp. 8071-8081, Aug 2017, doi: 10.1039/c7tc02343j.
    [28] Y. J. Kim, S. Oh, B. S. Yang, S. J. Han, H. W. Lee, H. J. Kim, J. K. Jeong, C. S. Hwang, and H. J. Kim, "Impact of the cation composition on the electrical performance of solution-processed zinc tin oxide thin-film transistors," ACS Appl. Mater. Interfaces, Article vol. 6, no. 16, pp. 14026-14036, Aug 2014, doi: 10.1021/am503351e.
    [29] O. Lahr, M. S. Bar, H. von Wenckstern, and M. Grundmann, "All-oxide transparent thin-film transistors based on amorphous zinc tin oxide fabricated at room temperature: approaching the thermodynamic limit of the subthreshold swing," Adv. Electron. Mater., Article vol. 6, no. 10, p. 6, Oct 2020, Art no. 2000423, doi: 10.1002/aelm.202000423.
    [30] J. K. Jeong, S. Yang, D. H. Cho, S. H. K. Park, C. S. Hwang, and K. I. Cho, "Impact of device configuration on the temperature instability of Al-Zn-Sn-O thin film transistors," Appl. Phys. Lett., Article vol. 95, no. 12, p. 3, Sep 2009, Art no. 123505, doi: 10.1063/1.3236694.
    [31] A. Faldi, M. Tirrell, T. P. Lodge, and E. Vonmeerwall, "Monomer diffusion and the kinetics of methyl-methacrylate radical polymerization at intermediate to high conversion," Macromolecules, Article vol. 27, no. 15, pp. 4184-4192, Jul 1994, doi: 10.1021/ma00093a020.
    [32] I. Isakov, H. Faber, M. Grell, G. Wyatt-Moon, N. Pliatsikas, T. Kehagias, G. P. Dimitrakopulos, P. P. Patsalas, R. P. Li, and T. D. Anthopoulos, "Exploring the Leidenfrost effect for the deposition of high-quality In2O3 layers via spray pyrolysis at low temperatures and their application in high electron mobility transistors," Adv. Funct. Mater., Article vol. 27, no. 22, p. 9, Jun 2017, Art no. 1606407, doi: 10.1002/adfm.201606407.
    [33] G. M. Huang, L. Duan, G. F. Dong, D. Q. Zhang, and Y. Qiu, "High-mobility solution-processed tin oxide thin-film transistors with high-kappa alumina dielectric working in enhancement mode," ACS Appl. Mater. Interfaces, Article vol. 6, no. 23, pp. 20786-20794, Dec 2014, doi: 10.1021/am5050295.
    [34] Y. M. Bai, C. Y. Zhao, R. K. Shi, J. Wang, F. Z. Wang, T. Hayat, A. Alsaedi, and Z. A. Tan, "Novel cathode buffer layer of Al(acac)(3)enables efficient, large area and stable semi-transparent organic solar cells," Mat. Chem. Front., Article vol. 4, no. 7, pp. 2072-2080, Jul 2020, doi: 10.1039/d0qm00198h.
    [35] F. Jones, H. Tran, D. Lindberg, L. M. Zhao, and M. Hupa, "Thermal stability of zinc compounds," Energy Fuels, Article vol. 27, no. 10, pp. 5663-5669, Oct 2013, doi: 10.1021/ef400505u.
    [36] S. Jeong, Y. Jeong, and J. Moon, "Solution-processed zinc tin oxide semiconductor for thin-film transistors," J. Phys. Chem. C, Article vol. 112, no. 30, pp. 11082-11085, Jul 2008, doi: 10.1021/jp803475g.
    [37] S. J. Seo, C. G. Choi, Y. H. Hwang, and B. S. Bae, "High performance solution-processed amorphous zinc tin oxide thin film transistor," J. Phys. D-Appl. Phys., Article vol. 42, no. 3, p. 5, Feb 2009, Art no. 035106, doi: 10.1088/0022-3727/42/3/035106.
    [38] B. N. Pal, B. M. Dhar, K. C. See, and H. E. Katz, "Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors," Nat. Mater., Article vol. 8, no. 11, pp. 898-903, Nov 2009, doi: 10.1038/nmat2560.
    [39] Y. Kim, J. Han, and S. K. Park, "Effect of zinc/tin composition ratio on the operational stability of solution-processed zinc–tin–oxide thin-film transistors," IEEE Electron Device Lett., vol. 33, no. 1, pp. 50-52, 2012, doi: 10.1109/LED.2011.2171913.
    [40] C. G. Lee and A. Dodabalapur, "Solution-processed zinc-tin oxide thin-film transistors with low interfacial trap density and improved performance," Appl. Phys. Lett., Article vol. 96, no. 24, p. 3, Jun 2010, Art no. 243501, doi: 10.1063/1.3454241.
    [41] J. H. Lim, H. J. Jeong, K. T. Oh, D. H. Kim, J. S. Park, and J. S. Park, "Semiconductor behavior of Li doped ZnSnO thin film grown by mist-CVD and the associated device property," J. Alloy. Compd., Article vol. 762, pp. 881-886, Sep 2018, doi: 10.1016/j.jallcom.2018.05.247.
    [42] R. D. Chandra, M. Rao, K. K. Zhang, R. R. Prabhakar, C. Shi, J. Zhang, S. G. Mhaisalkar, and N. Mathews, "Tuning electrical properties in amorphous zinc tin oxide thin films for solution processed electronics," ACS Appl. Mater. Interfaces, Article vol. 6, no. 2, pp. 773-777, Jan 2014, doi: 10.1021/am401003k.
    [43] G. T. Dang, M. W. Allen, M. Furuta, and T. Kawaharamura, "Electronic devices fabricated on mist-CVD-grown oxide semiconductors and their applications," Jpn. J. Appl. Phys., Article vol. 58, no. 9, p. 10, Sep 2019, Art no. 090606, doi: 10.7567/1347-4065/ab2195.
    [44] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, "High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer," Appl. Phys. Lett., Article vol. 86, no. 1, p. 3, Jan 2005, Art no. 013503, doi: 10.1063/1.1843286.
    [45] R. L. Hoffman, "Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors," Solid-State Electron., Article vol. 50, no. 5, pp. 784-787, May 2006, doi: 10.1016/j.sse.2006.03.004.
    [46] C. Chen, Y. Jiang, J. L. Guo, X. Y. Wu, W. H. Zhang, S. J. Wu, X. S. Gao, X. W. Hu, Q. M. Wang, G. F. Zhou, Y. W. Chen, J. M. Liu, K. Kempa, and J. W. Gao, "Solvent-assisted low-temperature crystallization of SnO2 electron-transfer layer for high-efficiency planar perovskite solar cells," Adv. Funct. Mater., Article vol. 29, no. 30, p. 9, Jul 2019, Art no. 1900557, doi: 10.1002/adfm.201900557.
    [47] R. Sykora, "Field-effect transistors based on solution processed zinc tin oxide," 2018.
    [48] F. A. Stevie and C. L. Donley, "Introduction to x-ray photoelectron spectroscopy," J. Vac. Sci. Technol. A, Article vol. 38, no. 6, p. 20, Dec 2020, Art no. 063204, doi: 10.1116/6.0000412.
    [49] A. G. Shard, "Practical guides for x-ray photoelectron spectroscopy: Quantitative XPS," J. Vac. Sci. Technol. A, Article vol. 38, no. 4, p. 13, Jul 2020, Art no. 041201, doi: 10.1116/1.5141395.
    [50] G. H. Major, N. Farley, P. M. A. Sherwood, M. R. Linford, J. Terry, V. Fernandez, and K. Artyushkova, "Practical guide for curve fitting in x-ray photoelectron spectroscopy," J. Vac. Sci. Technol. A, Article vol. 38, no. 6, p. 22, Dec 2020, Art no. 061203, doi: 10.1116/6.0000377.
    [51] N. Fairley, V. Fernandez, M. Richard-Plouet, C. Guillot-Deudon, J. Walton, E. Smith, D. Flahaut, M. Greiner, M. Biesinger, S. Tougaard, D. Morgan, and J. Baltrusaitis, "Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy," Appl. Surf. Sci. Adv., Article vol. 5, p. 9, Sep 2021, Art no. 100112, doi: 10.1016/j.apsadv.2021.100112.
    [52] S. Cho, J. H. Yang, J. G. Oh, S. H. Cho, C. S. Hwang, J. Jang, and S. Nam, "The role of oxygen in dramatically enhancing the electrical properties of solution-processed Zn-Sn-O thin-film transistors," J. Mater. Chem. C, Article vol. 5, no. 26, pp. 6521-6526, Jul 2017, doi: 10.1039/c7tc01190c.
    [53] L. C. Liu, J. S. Chen, and J. S. Jeng, "Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors," Appl. Phys. Lett., Article vol. 105, no. 2, p. 4, Jul 2014, Art no. 023509, doi: 10.1063/1.4890579.
    [54] K. D. Vernon-Parry, "Scanning electron microscopy: an introduction," III-Vs Review, Article vol. 13, no. 4, pp. 40-44, Jul 2000, doi: https://doi.org/10.1016/S0961-1290(00)80006-X.
    [55] A. Chauhan and P. Chauhan, "Powder XRD technique and its applications in science and technology," J Anal Bioanal Tech, vol. 5, no. 5, pp. 1-5, 2014.
    [56] U. Holzwarth and N. Gibson, "The Scherrer equation versus the 'Debye-Scherrer equation'," Nat. Nanotechnol., Letter vol. 6, no. 9, pp. 534-534, Sep 2011, doi: 10.1038/nnano.2011.145.
    [57] S. Baruah and J. Dutta, "Zinc stannate nanostructures: hydrothermal synthesis," Sci. Technol. Adv. Mater., Review vol. 12, no. 1, p. 18, Feb 2011, Art no. 013004, doi: 10.1088/1468-6996/12/1/013004.
    [58] T. Bora, M. H. Al-Hinai, A. T. Al-Hinai, and J. Dutta, "Phase transformation of metastable ZnSnO3 upon thermal decomposition by in-situ temperature-dependent Raman spectroscopy," J. Am. Ceram. Soc., Article vol. 98, no. 12, pp. 4044-4049, Dec 2015, doi: 10.1111/jace.13791.
    [59] L. Pavesi and M. Guzzi, "Photoluminescence of ALXGA1-XAS alloys," J. Appl. Phys., Review vol. 75, no. 10, pp. 4779-4842, May 1994, doi: 10.1063/1.355769.
    [60] I. Saafi, T. Larbi, A. Amlouk, and M. Amlouk, "Physical investigations and DFT model calculation on Zn2SnO4- ZnO (ZTO-ZO) alloy thin films for wettability and photocatalysis purposes," Optik, Article vol. 187, pp. 49-64, Jun 2019, doi: 10.1016/j.ijleo.2019.05.004.
    [61] Y. Park, G. Ferblantier, A. Slaoui, A. Dinia, H. Park, S. Alhammadi, and W. K. Kim, "Yb-doped zinc tin oxide thin film and its application solar cells to Cu(InGa)Se-2 solar cells," J. Alloy. Compd., Article vol. 815, p. 9, Jan 2020, Art no. 152360, doi: 10.1016/j.jallcom.2019.152360.
    [62] N. D. Thien, L. M. Quynh, L. V. Vu, and N. N. Long, "Phase transformation and photoluminescence of undoped and Eu3+-doped zinc stannate (Zn2SnO4) nanocrystals synthesized by hydrothermal method," J. Mater. Sci.-Mater. Electron., Article vol. 30, no. 2, pp. 1813-1820, Jan 2019, doi: 10.1007/s10854-018-0453-7.
    [63] Y. Jeong, C. Bae, D. Kim, K. Song, K. Woo, H. Shin, G. Z. Cao, and J. Moon, "Bias-stress-stable solution-processed oxide thin film transistors," ACS Appl. Mater. Interfaces, Article vol. 2, no. 3, pp. 611-615, Mar 2010, doi: 10.1021/am900787k.
    [64] J. Bang, S. Matsuishi, and H. Hosono, "Hydrogen anion and subgap states in amorphous In-Ga-Zn-O thin films for TFT applications," Appl. Phys. Lett., Article vol. 110, no. 23, p. 5, Jun 2017, Art no. 232105, doi: 10.1063/1.4985627.
    [65] T. Hryniewicz, P. Konarski, K. Rokosz, and R. Rokicki, "SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions," Surf. Coat. Technol., Article vol. 205, no. 17-18, pp. 4228-4236, May 2011, doi: 10.1016/j.surfcoat.2011.03.024.
    [66] "Spectrophotometry," 2022/1/4/. [Online]. Available: https://chem.libretexts.org/@go/page/1431.
    [67] R. Haarindraprasad, U. Hashim, S. C. B. Gopinath, M. Kashif, P. Veeradasan, S. R. Balakrishnan, K. L. Foo, and P. Poopalan, "Low temperature annealed zinc oxide nanostructured thin film-based transducers: Characterization for sensing applications," PLoS One, Article vol. 10, no. 7, p. 20, Jul 2015, Art no. e0132755, doi: 10.1371/journal.pone.0132755.
    [68] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd Edition. Wiley, 2006.
    [69] D. B. Williams and C. B. Carter, "The transmission electron microscope," in Transmission electron microscopy: Springer, 1996, pp. 3-17.
    [70] C. C. Hu, Modern Semiconductor Devices for Integrated Circuits. Pearson, 2009.
    [71] J. Zaumseil, K. W. Baldwin, and J. A. Rogers, "Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination," J. Appl. Phys., Article vol. 93, no. 10, pp. 6117-6124, May 2003, doi: 10.1063/1.1568157.
    [72] W. Y. Xu, H. Li, J. B. Xu, and L. Wang, "Recent advances of solution-processed metal oxide thin-film transistors," ACS Appl. Mater. Interfaces, Review vol. 10, no. 31, pp. 25878-25901, Aug 2018, doi: 10.1021/acsami.7b16010.
    [73] J. Li, Y. H. Zhou, D. Y. Zhong, X. F. Li, and J. H. Zhang, "Simultaneous enhancement of electrical performance and negative bias illumination stability for low-temperature solution-processed SnO2 thin-film transistors by fluorine incorporation," IEEE Trans. Electron Devices, Article vol. 66, no. 10, pp. 4205-4210, Oct 2019, doi: 10.1109/ted.2019.2936484.
    [74] H. Lee, S. Lee, Y. Kim, A. Siddik, M. M. Billah, J. Lee, and J. Jang, "Improvement of stability and performance of amorphous indium gallium zinc oxide thin film transistor by zinc-tin-oxide spray coating," IEEE Electron Device Lett., Article vol. 41, no. 10, pp. 1520-1523, Oct 2020, doi: 10.1109/led.2020.3018750.
    [75] H. W. Lee, B. S. Yang, Y. J. Kim, A. Y. Hwang, S. Oh, J. H. Lee, J. K. Jeong, and H. J. Kim, "Comprehensive studies on the carrier transporting property and photo-bias instability of sputtered zinc tin oxide thin film transistors," IEEE Trans. Electron Devices, Article vol. 61, no. 9, pp. 3191-3198, Sep 2014, doi: 10.1109/ted.2014.2337307.
    [76] S. Li, M. X. Wang, D. L. Zhang, H. S. Wang, and Q. Shan, "A unified degradation model of a-InGaZnO TFTs under negative gate bias with or without an Illumination," IEEE J. Electron Devices Soc., Article vol. 7, no. 1, pp. 1063-1071, Oct 2019, doi: 10.1109/jeds.2019.2946383.
    [77] M. Li, L. F. Lan, M. Xu, L. Wang, H. Xu, D. X. Luo, J. H. Zou, H. Tao, R. H. Yao, and J. B. Peng, "Gate bias stress stability under light irradiation for indium zinc oxide thin-film transistors based on anodic aluminium oxide gate dielectrics," J. Phys. D-Appl. Phys., Article vol. 44, no. 45, p. 4, Nov 2011, Art no. 455102, doi: 10.1088/0022-3727/44/45/455102.
    [78] K. Ide, K. Nomura, H. Hosono, and T. Kamiya, "Electronic defects in amorphous oxide semiconductors: A review," Phys. Status Solidi A-Appl. Mat., Article; Proceedings Paper vol. 216, no. 5, p. 28, Mar 2019, Art no. 1800372, doi: 10.1002/pssa.201800372.
    [79] Y. S. Shiah, K. Sim, Y. H. Shi, K. Abet, S. Ueda, M. Sasase, J. Kim, and H. Hosono, "Mobility-stability trade-off in oxide thin-film transistors," Nat. Electron., Article vol. 4, no. 11, pp. 800-807, Nov 2021, doi: 10.1038/s41928-021-00671-0.
    [80] E. Rucavado, Q. Jeangros, D. F. Urban, J. Holovsky, Z. Remes, M. Duchamp, F. Landucci, R. E. Dunin-Borkowski, W. Korner, C. Elsasser, A. Hessler-Wyser, M. Morales-Masis, and C. Ballif, "Enhancing the optoelectronic properties of amorphous zinc tin oxide by subgap defect passivation: A theoretical and experimental demonstration," Phys. Rev. B, Article vol. 95, no. 24, p. 10, Jun 2017, Art no. 245204, doi: 10.1103/PhysRevB.95.245204.
    [81] A. Abliz, "Hydrogenation of Mg-doped InGaZnO thin-film transistors for enhanced electrical performance and stability," IEEE Trans. Electron Devices, Article vol. 68, no. 7, pp. 3379-3383, Jul 2021, doi: 10.1109/ted.2021.3077214.
    [82] S. S. Shin, S. J. Lee, and S. I. Seok, "Exploring wide bandgap metal oxides for perovskite solar cells," APL Mater., Article vol. 7, no. 2, p. 9, Feb 2019, Art no. 022401, doi: 10.1063/1.5055607.
    [83] S. S. Shin, J. H. Suk, B. J. Kang, W. Yin, S. J. Lee, J. H. Noh, T. K. Ahn, F. Rotermund, I. S. Cho, and S. I. Seok, "Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells," Energy Environ. Sci., Article vol. 12, no. 3, pp. 958-964, Mar 2019, doi: 10.1039/c8ee03672a.

    無法下載圖示 校內:2028-07-01公開
    校外:2028-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE