簡易檢索 / 詳目顯示

研究生: 陳安皓
Chen, An-Hao
論文名稱: 鎳鈷錳硫酸鹽類進行鋰電池三元前驅物共沉澱之研究
Study on the Coprecipitation of Nickel-Cobalt-Manganese Sulfates for Ternary Precursors of Lithium Batteries
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 106
中文關鍵詞: 共沉澱三元前驅物鋰電池
外文關鍵詞: lithium-ion batteries, hydrometallurgy, pyrometallurgy
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用GR級硫酸鹽類使用特定濃度、比例等條件,模擬將已經過500攝氏溫度火法焙燒的鋰電池,在燒除內部黏結劑,以及內部有價金屬進行硫酸1g/15ml濕法浸出(leaching)並使用氨水進行pH=7.4下萃取(extraction)步驟後,提升pH值,並額外使用硫酸鎳添加於溶液之中,將含有鎳、鈷、錳之溶液成分,使用不同的鎳鈷錳配置比例,以及不同的pH值搭配,找出可以配合萃取製程後,在濃度小於0.3M下之鋰電池三元前驅物的共沉澱製程的最佳與次佳參數。

    使用9:0.5:0.5(955)、8:1:1(811)與6:2:2(622)作為前驅物共沉澱前,鎳鈷錳金屬溶液的三元比例配置,在配置一開始,經由沸騰去除水中之氧離子後,進行硫酸鹽類之添加,添加的比例為1g/15ml,配置成各種比例之溶液,先後使用10%氫氧化鈉溶液作為pH值調整的之酸鹼調節劑調整至目標pH(10.5~12.5),後再使用28%wt之氨水作為絡合劑的使用,使金屬離子可以形成M(OH)2之形式沉澱於溶液下。

    使用ICP-MS、XRD、SEM等作為分析的裝置,對於該M(OH)2確定晶體形式,利用XRD對繞射峰進行分析,SEM進行表面觀測其表面結晶行為,ICP-MS則偵測前驅物在各種參數下,所含的NCM元素比例。
    結果顯示,在955溶液配置下,pH值在10.5、11.0、12.0的參數,可以共沉澱出含較高鎳濃度的前驅物,在pH=10.5下,鎳含量達到了61.4%,且在表面分析中,有較為特別的表面結晶現象產生。811溶液配置下,在pH值為12.0與12.5兩個參數,可以有鎳含量較高的前驅物產生,分別為46.5%與51.7%,在這個溶液配置的XRD圖分析中,可以明顯看到鈷、錳氫氧化物的繞射峰產生。622溶液配置下,僅有pH=12.5的情況可以具有高鎳前驅物的產生,鎳含量達到了50.2%,但在XRD的分析之中,其並未明顯表現明確的Ni(OH)2的繞射峰,僅有微弱之跡象,在表面的觀測也與其他溶液比例相比下,較無明顯結塊之現象。

    根據本研究模擬在1g/15ml的溶液中,透過使用GR級硫酸鹽類配置,並使用氨水與氫氧化鈉進行鋰電池前驅物的共沉澱,評估實際回收流程在硫酸浸出液中萃取後的再製結果,結果顯示,可形成的前驅物多為523、622等形式,大多集中在高pH值(12以上)之區域。針對鋰電池回收過程中的金屬提取及前驅物共沉澱製程進行了深入探討,通過調控pH值與金屬比例配置,可調整鋰電池回收過程中的最終前驅物的含量比例,有助於鋰電池的再製與資源循環利用。

    Because of the development of modern science and technology, lithium-ion batterie play an important role in today's energy storage market. It is expected that in the next few years, the use number of electric vehicles will increase several times greater than now, that will be leading to increased use and disposal of lithium-ion batteries. If not properly handled the garbage of lithium-ion batteries, can cause significant environmental damage, so it is necessary to recycle and remanufacture them. The commonly used recycling methods are hydrometallurgy and pyrometallurgy. Pyrometallurgy uses high temperatures to recover metals,hydrometallurgy uses various solvents or acids for leaching, followed the use of complexing agents or precipitants to adjust the pH for the recovery of individual metals. In this study, we combined previous recycling processes from our laboratory, and after pyrometallurgical and hydrometallurgical recovery processes, the Simulation of concentrations and ratios after previous experiments, we adjusted the pH value and the ratio of nickel, cobalt, and manganese in the solution to co-precipitation. The results showed that with a solution ratio of 9:0.5:0.5 and a pH of 10.5, the best crystallinity and ternary ratio were obtained, the Ni retio is 61%.

    章節目錄 i 圖目錄 iii 表目錄 vi 摘要 2 第一章 緒論 9 1.1 研究背景 9 1.2研究目的 11 1.3名詞定義 12 第二章 文獻探討 13 2.1 鋰電池之現況 13 2.2 鋰電池組成 16 2.3 鋰電池回收現況 18 2.4 現行回收流程 24 2.5 鋰電池三元前驅物製造方法 29 2.5.2 共沉澱法 31 2.6 先前之鋰電池回收與前驅物再製 36 2.6.1 鋰電池浸出後萃取 36 2.6.2鋰電池萃取後再製 40 第三章 實驗方法與步驟 47 3.1 實驗原料 47 3.2 實驗設備 49 3.3 實驗步驟 54 3.3.1 實驗前比例計算 55 3.3.2 溶液配置處理 56 3.3.3 pH值滴定 56 3.3.4共沉澱反應 57 第四章 實驗結果與討論 58 4.1 NCM溶液比例955共沉澱實驗 58 4.1.1 NCM溶液比例955共沉澱實驗 ICP-MS分析 58 4.1.2 NCM溶液比例955共沉澱實驗XRD 分析 61 4.1.3 NCM溶液比例955共沉澱實驗SEM分析 63 4.2 NCM溶液比例811共沉澱實驗 66 4.2.1 NCM溶液比例811共沉澱實驗ICP-MS分析 66 4.2.2 NCM溶液比例811共沉澱實驗 XRD分析 68 4.2.3 NCM溶液比例811共沉澱前驅物 SEM分析 70 4.3 NCM溶液比例622共沉澱實驗 73 4.3.1 NCM溶液比例622共沉澱實驗ICP-MS分析 73 4.3.2 NCM溶液比例622共沉澱實驗 XRD分析 75 4.3.3 NCM溶液比例622共沉澱前驅物 SEM分析 77 4.4 XRD圖譜的非氫氧化鎳相 79 4.5 Ni/Co/Mn在溶液中與鋰電池三元前驅物中所含比例 81 4.6 鋰電池三元前驅物以共沉澱法再製方向評估 85 第五章 結論 89 參考文獻 92

    [1] Armand, M., (2008) Tarascon, JM. Building better batteries. Nature, Volume 451, p652–657

    [2]財團法人專利檢索中心,鋰電池技術之專利分析(2016)

    [3] Boulding, K. (1966) The Economics of the Coming Spaceship Earth. Environmental Quality in a Growing Economy, Resources for the Future, p3-14

    [4] C. Hanisch, T. (2015) Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes”, J. Clean Prod., Volume 108, 301

    [5] IEA Global EV Outlook 2023 Catching up with climate ambitions(2023)

    [6] Melin, H., (2018). The lithium-ion battery end-of-life market – A baseline study, World Economic Forum. Switzerland

    [7] Mineral commodity summaries 2019: U.S. Geological Survey (2019)

    [8] 廖綉玉,綠色能源背後的血鈷礦(2022)

    [9] London metal exchange, (2024)

    [10]鎳金屬價格,我國基本金屬供需情勢發展監控平台(2024)

    [11] Cobalt price, daily metal price (2024)

    [12] Zanoletti, A et al., (2024) A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries , Volume 10, 38

    [13] Seoa Kim et al., (2021) A comprehensive review on the pretreatment process in lithium-ion battery recycling, Journal of Cleaner Production, Volume 294,126329

    [14] S.F. Lux et al., (2012) The mechanism of HF formation in LiPF6 based organic carbonate electrolytes, Electrochemistry Communications, Volume 14, Issue 1,p47-50

    [15] M. Grützke et al., (2015) Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle”, J. Power Sources, Volume 273, p83-88

    [16] Nazanin Bahaloo-Horeh et al., (2017) Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus Niger, Waste Management, Volume 60, p666-679

    [17] Parisa Moazzam et al., (2021) Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries, Chemosphere, Volume 277,130196

    [18] H. Pinegar et al., (2019) Recycling of End-of-Life Lithium-Ion Batteries, Part I: Commercial Processes, Journal of Sustainable Metallurgy., Volume 5, p402–416

    [19] L. Li, Y. Bian et al., (2019) A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium- ion batteries, Waste Manage., Volume 85, p437- 444

    [20] J. Hu et al., (2017) A promising approach for the recovery of high value-added metals from spent lithium-ion batteries”, Journal of Power Sources. Volume 351. 192-199

    [21] Junmin Nan et al., (2005) Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction, Journal of Power Sources, Volume 152, p278-284

    [22] Biswal Basanta Kumar et al., (2023) Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review Frontiers in Microbiology, volume 14

    [23] Chagnes et al., (2013) A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries, Journal Article, Journal of Chemical Technology & Biotechnology, Volume 88, p1191-1199

    [24] Kumari, et al., (2016) Clean process for recovery of metals and recycling of acid from the leach liquor of PCBs. Journal of Cleaner Production. Volume 112, p4826-4834

    [25] Xianlai Zeng et al., (2015) Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid, Journal of Hazardous Materials, Volume 295, p112-118

    [26] Peichao Ning et al., (2020) Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system, Waste Management, Volume 103, p52-60

    [27] Yanhui Kong et al., (2023) Simple and efficient selective extraction of lithium from spent ternary lithium-ion batteries via oxidation/de-lithiation using NaClO, Separation and Purification Technology, Volume 322,124280

    [28] Park, K et al., (2017) Re-construction layer effect of LiNi0.8Co0.15Mn0.05O2 with solvent evaporation process. Sci Rep 7, 44557

    [29]吳豐聿碩士論文,鎳鈷錳三元鋰電池選擇性萃取回收研究(2021)

    [30]莊維哲碩士論文,鋰離子電池濕法冶金與三元前驅物再製研究(2023)

    [31] Myung et al., (2017) Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives, ACS Energy Letters, Volume 2, p196-223

    [32] Jimin Lee et al., (2023) Resynthesis of Ni-rich Li[Ni0.9Co0.05Mn0.05]O2 in simulated Li-ion battery leachate after saline discharge,Journal of Alloys and Compounds, Volume 960

    [33] Ghatak, et al., (2018). Effect of Cobalt Content on the Electrochemical Properties and Structural Stability of NCA Type Cathode Materials. Physical Chemistry Chemical Physics. 20. 10.1039/C8CP03237H

    [34] Shankar Aryal et al., (2021) Roles of Mn and Co in Ni-rich layered oxide cathodes synthesized utilizing a Taylor Vortex Reactor, Electrochemical Acta, Volume 391,138929

    [35] R. Du et al., (2015) Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-ff potential of 4.5V, Ceramics International, Volume 41, Issue 5, Part B,p7133-7139

    [36] Jimin Lee et al., (2023) Resynthesis of Ni-rich Li[Ni0.9Co0.05Mn0.05]O2 in simulated Li-ion battery leachate after saline discharge, Journal of Alloys and Compounds, Volume 960,170910

    [37] Y. Shen et al., (2021) Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes ACS Applied Materials & Interfaces,Volume 13, p717-726

    [38] Xingbo Guo et al., (2022) Effect of precursor structure transformation on synthesis and performance of LiNi0.5Co0.2Mn0.3O2 cathode material, Solid State Sciences, Volume 131,106954

    [39] Yin Ding et al., (2020) Controllable synthesis of spherical precursor Ni0.8Co0.1Mn0.1(OH)2 for nickel-rich cathode material in Li-ion batteries, Ceramics International, Volume 46, Issue 7, p9436-9445

    [40] Chia-Ming Yang et al., (2025) Analysis of NCM concentration and extraction efficiency in the lithium-ion battery extraction process, Separation and Purification Technology, Volume 358, Part A,130233

    [41] T. Kauppinen et al., (2023) Co-precipitation of NCM 811 Using Recycled and Purified Manganese: Effect of Impurities on the Battery Cell Performance, ChemElectro, Volume 10, e202300265

    [42] Farouk Tedjar et al., (2007) Method for the mixed recycling of lithium-based anode batteries and cells, Patent Application Publication, patent no. US 2007/0196725 A1

    [43] Sophie Solchenbach et al., (2018) Quantification of PF5 and POF3 from Side Reactions of LiPF6 in Li-Ion Batteries, Journal of The Electrochemical Society, Volume 165, 13 A3022-A3028

    [44]忠明 谷井(1999)電池の解体処理方法,三菱重工業株式会社,patent no. JP3495707B2

    [45] L.-F. Huang et al., (2017) Improved Electrochemical Phase Diagrams from Theory and Experiment: The Ni–Water System and Its Complex Compounds, Physical Chemistry, 121, 18, p.9782~9789.

    [46] Z. Wang et al., (2020) Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional, npj Comput Mater 6, 160

    [47] Boytsova, Olga et al., (2015). Nanocrystalline Manganese Dioxide Synthesis by Microwave-Hydrothermal Treatment. Russian Journal of Inorganic Chemistry. 60. 546-551. 10.1134/S0036023615050022.

    [48] T.J. O'Keeke, (2001) Pourbaix Diagrams, in: K.H.J. Buschow et al.,(Eds.) Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, p.7774–7781.

    [49] Bokai Cao et al., (2022) Controlled Synthesis of Single–Crystalline Ni–Rich Cathodes for High-Performance Lithium–Ion Batteries, ACS Applied Materials & Interfaces 14 (48), 53667-53676

    [50] Jimin Lee et al., (2023) Resynthesis of Ni-rich Li[Ni0.9Co0.05Mn0.05]O2 in simulated Li-ion battery leachate after saline discharge,Journal of Alloys and Compounds,Volume 960,170910

    [51] Yongjiang Sun et al., (2021) Enhancing the stabilities and electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode material by simultaneous LiAlO2 coating and Al doping,Electrochimica Acta, Volume 376,138038

    [52] Zheng, Yadong et al., (2021). Unveiling the Influence of Carbon Impurity on Recovered NCM622 Cathode Material. ACS Sustainable Chemistry & Engineering.9.10.1021/acssuschemeng.1c01510.

    [53] 王宗雄(2021),鋰離子電池高鎳三元正極材料的進展、挑戰及展望,工研院材化所

    [54] Yang Zhang et al., (2021) An effective modification strategy enhancing the structure stability andelectrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ionbatteries,Journal of Alloys and Compounds, Volume 887,161480

    無法下載圖示 校內:2030-01-20公開
    校外:2030-01-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE