簡易檢索 / 詳目顯示

研究生: 吳崇嘉
Wu, Chung-Chia
論文名稱: IGBT全橋模組功率損耗分析暨PCB佈局寄生參數估算
Power Loss Analysis of the IGBT Full Bridge Module and Estimation of the PCB Layout Parasitic Parameters
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 115
中文關鍵詞: 絕緣閘雙極電晶體寄生參數估算ANSYS Q3D®功率損耗功率開關全橋模組
外文關鍵詞: Insulated Gate Bipolar Transistor (IGBT), Estimation of the parasitic parameters, ANSYS Q3D®, Power Loss, IGBT power switch full-bridge module
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業自動化中伺服馬達驅動變流器為重要的角色,其中絕緣閘雙極電晶體仍然為大功率開關主流選項,然而其開關截止時有拖尾電流的特性,使開關功率損耗大,生熱高,故損耗估算儼然為最重要的課題。首先從文獻中探討寄生參數對開關切換特性的影響,再透過ANSYS Q3D®萃取馬達驅動器電路佈局的寄生參數,並將模擬結果與實測結果比較,確認寄生參數分析結果的準確度。接著經由實測建立不同開關電流下的切換損耗表。透過本論文提出IGBT功率開關全橋模組開關電流反推方法計算一周期下負載電流的開關功率損耗,再與商用軟體分析結果比較,證明所提手法具有相當的準確度。

    Inverters of servo motor drive play an important role in industrial automation. The Insulated Gate Bipolar Transistor (IGBT) is still the main stream of the high power switching device. However, the characteristics of the tail current at switching off state causes large switching power loss and heat generation. Therefore, estimation of the power loss is the most important issue. To understand the power loss of the switching device and the associate parasitic effect, the influence of parasitic parameters on the switching characteristics is discussed first. Then, the parasitic parameters of the motor drive layout are retrieved by ANSYS Q3D®. Circuit simulation is compared with the measurement result to confirm the accuracy of the parasitic parameter analysis. Following that, a loss formula is used to establish the loss lookup table that is associated with different switching currents. Finally the one-cycle power loss can be derived from the lookup table, which is compared with that of the commercial software. Testing result has proven that the proposed method has satisfactory accuracy.

    摘要 I Abstract II SUMMARY III 誌謝 XIII 目錄 XIV 圖目錄 XVIII 表目錄 XXV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 文獻回顧 5 1.4 本文大綱 8 第二章 IGBT開關特性與介紹 10 2.1 前言 10 2.2 IGBT特性介紹 11 2.3 功率開關元件比較 12 2.3.1 雙脈衝實驗電路 12 2.3.2 雙脈衝實驗結果比較 14 第三章 馬達驅動變流器寄生參數估算 21 3.1 前言 21 3.2 ANSYS Q3D®寄生參數估算方法 21 3.2.1 集膚效應 22 3.2.2 ANSYS Q3D®電路佈局寄生電感分析方式 24 3.3 寄生參數對開關特性的影響 26 3.3.1 寄生參數對開關截止暫態特性的影響 30 3.3.2 寄生參數對開關導通暫態特性的影響 32 3.4 ANSYS Q3D®電路模型合理性 36 3.4.1 PCB電路佈局3D建模 36 3.4.2 電路因果性 37 3.4.3 電路被動性 39 3.5 寄生參數估算結果 41 第四章 馬達驅動電路之PCB損耗分析 47 4.1 前言 47 4.2 馬達驅動變流器電路模型建立 47 4.2.1 功率開關模擬模型建立 47 4.2.2 含PCB佈局寄生參數變流器模擬電路建立 49 4.3 單橋雙脈衝測試方法與結果 51 4.3.1 單橋雙脈衝測試方法 51 4.3.2 雙脈衝實驗實測結果 55 4.4 模擬結果與實測結果驗證 60 4.5 PCB電路損耗分析 64 4.5.1 鄰近效應 64 4.5.2 佈局損耗分析結果 67 第五章 開關功率損耗計算 72 5.1 前言 72 5.2 開關功率損耗計算方法 72 5.2.1 開關功率損耗之切換損耗(Switching Loss) 72 5.2.2 開關功率損耗之導通損耗(Conduction Loss) 74 5.2.3 反向恢復電流對切換損耗的影響 76 5.2.4 推算一周期負載電流下開關功率損耗之方法 80 5.3 開關損耗計算結果 88 5.3.1 實測切換損耗計算結果 88 5.3.2 一周期負載電流下的切換損耗計算結果 93 5.3.3 一周期負載電流下的開關功率損耗計算結果 101 第六章 結論與未來展望 108 6.1 總結 108 6.2 未來研究方向 109 參考文獻 111

    [1] Olivier Bernatchez, "Increasing Efficiency of Electric Vehicle Powertrain using IGBT inverters"[Online], Dana TM4 - Electric and hybrid power-train systems, Aug.2016. Available: https://www.danatm4.com/blog/increasing-efficiency-electric-vehicle-powertrain-using-igbt-inverters/
    [2] 劉彥群,「功率模組用導熱封裝材料應用與發展」,工業材料雜誌364期,2017。
    [3] MARKET RESEARCH FUTURE,“IGBT Market Research Report - Global Forecast to 2023”,2018.
    [4] P. Ning, L. Li, X. Wen and H. Cao, "A hybrid Si IGBT and SiC MOSFET module development," in CES Transactions on Electrical Machines and Systems, vol. 1, no. 4, pp. 360-366, December 2017.
    [5] Semiconductor Engineering, Mark LaPedus ,"SiC Demand Growing Faster Than Supply",MAY, 2019. Available: https://semiengineering.com/sic-demand-growing-faster-than-supply/
    [6] Infineon Technologies, Tim McDonald, GaN Technology Development, Worldwide Applications and Marketing, "GaN in a Silicon world: com-petition or coexistence?," APEC 2016.
    [7] Semiconductor Engineering,Llew Vaughan-Edmunds,"Limitations of silicon power switches are driving development of new materials that promise superior perfor-mance,"July,2019.Available:https://semiengineering.com/ sili-con-carbides-superpowers/
    [8] K. Shirabe et al., "Efficiency Comparison Between Si-IGBT-Based Drive and GaN-Based Drive," in IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 566-572, Jan.-Feb.2014.
    [9] H. Tanabe, T. Kojima, A. Imakiire, K. Fuji, M. Kozako and M. Hikita, "Comparison performance of Si-IGBT and SiC-MOSFET used for high efficiency inverter of contactless power transfer system," 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, NSW, 2015, pp. 707-710.
    [10] S. Safari, A. Castellazzi and P. Wheeler, "Experimental study of parasitic inductance influence on SiC MOSFET switching performance in Matrix converter," 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, 2013, pp. 1-9.
    [11] Z. Chen, D. Boroyevich and R. Burgos, "Experimental parametric study of the parasitic inductance influence on MOSFET switching characteris-tics," The 2010 International Power Electronics Conference - ECCE ASIA -, Sapporo, 2010, pp. 164-169.
    [12] Y. Shen, J. Jiang, Y. Xiong, Y. Deng, X. He and Z. Zeng, "Parasitic In-ductance Effects on the Switching Loss Measurement of Power Semi-conductor Devices," 2006 IEEE International Symposium on Industrial Electronics, Montreal, Que., 2006, pp. 847-852.
    [13] J. Wang, H. S. Chung and R. T. Li, "Characterization and Experimental Assessment of the Effects of Parasitic Elements on the MOSFET Switching Performance," in IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 573-590, Jan. 2013.
    [14] Lei Ren, Qian Shen and Chunying Gong, "Ringing frequency extraction for health monitoring of power transistors," IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, 2016, pp. 447-452.
    [15] H. Daou, M. Ameziani, D. Lhotellier, F. Costa, M. Petit and E. Labouré, "Dynamic electric model for IGBT power module based on Q3D® and Simplorer®: 3D Layout design, stray inductance estimation, experi-mental verifications," 2016 International Conference on Electrical Sys-tems for Aircraft, Railway, Ship Propulsion and Road Vehicles & Inter-national Transportation Electrification Conference (ESARS-ITEC), Toulouse, 2016, pp. 1-6.
    [16] I. Kovačević-Badstübner, U. Grossner, D. Romano, G. Antonini and J. Ekman, "A more accurate electromagnetic modeling of WBG power modules," 2018 IEEE 30th International Symposium on Power Semi-conductor Devices and ICs (ISPSD), Chicago, IL, 2018, pp. 260-263.
    [17] I. Ndip, A. Öz, H. Reichl, K. Lang and H. Henke, "Analytical Models for Calculating the Inductances of Bond Wires in Dependence on their Shapes, Bonding Parameters, and Materials," in IEEE Transactions on Electromagnetic Compatibility, vol. 57, no. 2, pp. 241-249, April 2015.
    [18] Dr. Milan ROSINA,“GaN and SiC power device: market overview,” Principal Analyst, Power Electronics & Batteries Yole Développement, November 15th, 2018.
    [19] Basic Electronics Tutorials and Revision,"Insulated Gate Bipola Tran-sistor". Available: https://www.electronics-tutorials.ws/power/insulated-gate-bipolar-transistor.html
    [20] M. R. Ahmed, R. Todd and A. J. Forsyth, “Analysis of SiC MOSFETs under Hard and Soft-Switching,”in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 20-24 Sept. 2015.
    [21] S. S. Ahmad and G. Narayanan, “Double Pulse Test Based Switching Characterization of SiC MOSFET,”in 2017 National Power Electronics Conference (NPEC), 18-20 Dec. 2017.
    [22] Marty Brown, “Power Sources and Supplies,” ScienceDirect,20 May 2008.
    [23] ROHM, “SCT3060AL N-channel SiC power MOSFET,” Datasheet, Jun. 2018.
    [24] ROHM, “RGT50TS65D 650V 25A Field Stop Trench IGBT”, Datasheet, 2015.
    [25] STMicroelectronics, “Automotive-grade N-channel 650 V, 0.058 Ω typ., 42 A MDmesh™ M5 Power MOSFET in a D²PAK package,” Datasheet, 2018.
    [26] L. Ene, D. Sănătescu, C. Sandu, T. Bibirică and M. Iordache, "Simu-la-tion of magnetically coupled coils in Ansoft Q3D Extractor program," 2017 International Conference on Optimization of Electrical and Elec-tronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, 2017, pp. 202-207.
    [27] Ansys Q3D Extractor, “High-Performance Parasitic Extraction”, Availa-ble:https://www.ansys.com/products/electronics/ansys-q3d-extractor
    [28] R. A. Dias ; G. R. S. Lira ; E. G. Costa ; R. S. Ferreira ; A. F. An-drade,“Skin effect comparative analysis in electric cables using compu-tational simulations”, 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), 12-16 May 2018.
    [29] Floyd Chui,“Skin effect & proximity effect”,Bull Will, January 2014.
    [30] Ting-Hao Yeh, “Workshop 03: AC RL Solver”, ANSYS Taiwan, V2018.2 Release.
    [31] Diego M. Cortés-Hernández and Reydezel Torres-Torres,“Modeling the Frequency-Dependent Series Parasiticsof Ground–Signal–Ground Pads Used to Probe On-Wafer Microstrip-Line-Fed Devices”, IEEE Transac-tions on Microwave Theory and Techniques ( Volume: 65 , Issue: 6 , June 2017 ), pp. 2085 – 2092, February 2017.
    [32] Y. Yamashita, J. Furuta, S. Inamori and K. Kobayashi, "Design of RCD snubber considering wiring inductance for MHz-switching of SiC-MOSFET," 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, 2017, pp. 1-6.
    [33] LiTan, JeanJiang," Digital Signal Processing (Second Edi-tion)",Fundamentals and Applications,2013, Pages 57-85. Available:https://www.sciencedirect.com/science/article/pii/B9780124158931000032
    [34] 詹育霖,"一種處理微波電路模型萃取發散性之數值方法",碩士論文,中華民國101年7月。
    [35] Nicholas Kottenstette,Michael J. McCourt,Meng Xia,Vijay Gupta ,Panos J. Antsaklis, " On Relationships Among Passivity, Positive Realness, andDissipativity in Linear Systems",23 January 2014.
    [36] Infineon Technologies,"Discrete IGBT Explanation of discrete IGBTs' datasheets",2015.
    [37] Fuji Electric,"7MBR100VP060-50IGBT MODULE",Datasheet,March 2014.
    [38] U.S.Gudmundsdot́tir, "Proximity effect in fast transient simulations of an underground transmission cable",Electric Power Systems Re-search,Volume 115, October 2014, Pages 50-56
    [39] Chen, S.-C., Minh, P.S., Chang, J.-A., Huang, S.-W., Huang, C.-H., "Mold temperature control using high-frequency proximity effect in-duced heating",International Communications in Heat and Mass Transfer, Volume 39, Issue 2, February 2012, Pages 216-223.
    [40] Riba,J.R.,"Calculation of the ac to dc resistance ratio of conductive nonmagnetic straight conductors by applying FEM simula-tions",European Journal of Physics. September 2015.
    [41] Thomas Brand,“Important Characteristics of Insulated Gate Drivers”, Analog Devices, Inc ,2019.
    [42] Tektronix,“Power Supply Measurement and Analysis”, 10 February 2011.
    [43] Kaixin Wei,Chengning Zhang,Xuelian Gong,Tieyu Kang, “The IGBT Losses Analysis and Calculation of Inverter for Two-seat Electric Aircraft Application”, ScienceDirect, May 2017, pp.2623-2628.
    [44] Dr. Dušan Graovac, Marco Pürschel ,“IGBT Power Losses Calculation Using the Data-Sheet Parameters”, Infineon Technologies, January 2009.
    [45] B. Gu, J. Dominic, J. Lai, C. Chen, T. LaBella and B. Chen, "High Re-liability and Efficiency Single-Phase Transformerless Inverter for Grid-Connected Photovoltaic Systems," in IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2235-2245, May 2013.
    [46] Peter Haaf, Jon Harper, "Understanding Diode Reverse Recovery and its Effect on Switching Losses",Fairchild Power Seminar 2007.
    [47] SEMIKRON, "Determining switching losses of SEMIKRON IGBT modules", Application Note AN 1403,2014.
    [48] 賴日生,"寬能隙功率半導體元件之特性及電路設計考量,"工業技術研究院,2020。
    [49] Fuji Electric,"功率半導體 Fuji IGBT Simulator,"富士IGBT 模組仿真工具 Ver. 6 用户手冊,Jul. 2020.Available:https://www.fujielectric.com/products/semiconductor/cn/model/igbt/simulation/index.html
    [50] Fuji Electric,"Chapter 3_Heat Dissipation Design Method",Aug. 2019. Available:https://www.fujielectric.com/products/semiconductor/model/
    igbt/application/index.html

    無法下載圖示 校內:2025-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE