簡易檢索 / 詳目顯示

研究生: 林俊佑
Lin, Chun-Yu
論文名稱: 採用高壓直流輸電系統於混合再生能源發電系統之穩定度改善與功率潮流控制
Stability Improvement and Power Flow Control of a Hybrid Renewable-Energy Power-Generation System Using a High-Voltage Direct-Current Link
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 185
中文關鍵詞: 離岸式風場潮汐場沿岸波浪場高壓直流傳輸系統穩定度
外文關鍵詞: Offshore wind farm, tidal farm, wave energy farm, hybrid renewable-energy system, high-voltage direct-current (HVDC) link, stability
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係將離岸式風場、潮汐場及沿岸波浪場等混合式再生能源系統以聚集等效之方式整合,並透過高壓直流傳輸系統與電網端做連接。在本論文中所用之各發電系統交直軸等效數學模型是假設系統於三相平衡條件下所推導,並利用所推導之數學模型分別進行系統頻域之穩態特徵値以及時域動態特性分析。文中並以極點安置法設計高壓直流傳輸系統之比例-積分-微分阻尼控制器,並將該控制器加入該混合式再生能源系統中,分析比較加入所設計阻尼控制器前後之穩態及動態響應。由其模擬結果可知,當高壓直流傳輸系統加入比例-積分-微分阻尼控制器後可做功率潮流控制,並有效改善系統遭受干擾時之穩定度特性,提升系統阻尼響應。

    This thesis presents the research results of stability improvement and power flow control of a hybrid renewable-energy power-generation system including an equivalent aggregated offshore wind farm, a tidal current farm, and a wave energy farm connected to power grid through a high-voltage direct-current (HVDC) link. The q-d axis equivalent mathematical model is developed under three-phase balanced loading conditions to establish the complete model of the studied system. Pole assignment approach is used to design a proportional-integral-derivative (PID) damping controller for the HVDC system. Steady-state characteristics of the studied system under various operating conditions using eigen scheme are performed. Time-domain simulations of the studied system subject to disturbance conditions are also carried out. It can be concluded from the steady-state and dynamic simulation results of the studied system that the proposed HVDC joined with the designed PID damping controller is capable of controlling power flow and improving stability of the studied system under various disturbance conditions.

    中文摘要,I 英文摘要,II 謝誌,III 目錄,IV 表目錄,VIII 圖目錄,X 符號說明,XIII 第一章 緒論,1 1-1 研究背景,1 1-2 相關再生能源及高壓直流傳輸系統介紹,2 1-2-1 離岸式風力發電簡介,2 1-2-2 潮汐發電簡介,4 1-2-3 沿岸波浪發電簡介,6 1-2-4 高壓直流傳輸系統簡介,8 1-3 研究動機,10 1-4 相關文獻回顧,11 1-5 本論文之貢獻,19 1-6 研究內容概述,19 第二章 系統數學模型,22 2-1 前言,22 2-2 風之數學模型,24 2-3 風渦輪機之數學模型,26 2-4 潮汐流速之數學模型,28 2-5 潮汐渦輪機之數學模型,31 2-6 威爾斯渦輪機之數學模型,32 2-7 渦輪機與發電機間轉矩之數學模型,35 2-8 離岸式風場與沿岸波浪場雙饋式感應發電機之數學模型,36 2-9 潮汐場永磁式同步發電機之數學模型,42 2-10 渦輪機葉片旋角控制器之數學模型,48 2-11 高壓直流傳輸系統之數學模型,49 第三章 極點安置法設計阻尼控制器對系統的影響,55 3-1 前言,55 3-2 高壓直流傳輸系統之控制系統模型,55 3-3 以極點安置法設計比例-積分-微分阻尼控制器,57 3-4 靈敏度分析,62 第四章 離岸式風場、潮汐場與沿岸波浪場加入高壓直流傳輸系統併聯 電網之穩態分析,67 4-1 前言 67 4-2 風速、波浪氣流速與潮汐流速變動之穩態分析,68 4-2-1 風速與波浪氣流速變動之穩態工作點分析,68 4-2-2 潮汐流速變動之穩態工作點分析,76 4-2-3 風速、波浪氣流速與潮汐流速變動之系統特徵值分析,87 4-3 電網電壓變動之穩態分析,105 4-3-1 電網端電壓變動系統之穩態工作點分析,105 4-3-2 電網端電壓變動之系統特徵值分析,117 4-4 本地負載阻抗變動之穩態分析,123 4-4-1本地負載阻抗變動系統之穩態工作點分析,123 4-4-2本地負載阻抗變動之系統特徵值分析,135 第五章 離岸式風場、潮汐場與沿岸波浪場加入高壓直流傳輸系統併聯 電網之動態分析,143 5-1 前言,143 5-2 離岸式風場發生轉矩干擾之動態分析,143 5-3 離岸式風場風速變動之動態分析,151 5-4 波浪氣流速變動之動態分析,159 5-5 電網端發生三相短路故障之暫態分析,166 第六章 結論與未來研究方向,175 6-1 結論,175 6-2 未來研究方向,176 參考文獻,178 附錄,183 作者簡介,184

    [1] 中華民國經濟部能源局,http://www.moeaboe.gov.tw/,2011年5月16日。
    [2] 李賢華,近岸海域資源開發,台灣近岸產業發展研討會,2004年10月,http://www.iut.nsysu.edu.tw/UTS/TNCPD/3-TNCPD.pdf。
    [3] 陳壽孫、羅靜儀、石金福、楊金石、蒲冠志,電力系統分析,新文京開發出版股份有限公司,1995年6月。
    [4] The European Wind Energy Association, http://www.ewea.org/, retrieved date: June 16, 2011.
    [5] Warwick Energy Limited Offshore Wind Farms, http://www.warwic- kenergy.com/offshore/thanet.htm/, retrieved date: May 10, 2011.
    [6] Dong Energy, http://www.dongenergy.com/Hornsrev2/EN/Pages/-
    index.aspx, retrieved date: May 16, 2011.
    [7] Allianz Knowledge Site, http://knowledge.allianz.com/energy/, retrieved date: May 12, 2011.
    [8] SenGen, http://www.seageneration.co.uk/site-preperation.asp,
    retrieved date : June 5, 2011.
    [9] Sihwa Lake Tidal Power Station, http://en.wikipedia.org/wiki/Shiwa- Lake Tidal Power Station, retrieved date : June 5, 2011.
    [10] Wave Energy Centre, http://www.wavec.org/index.php/16/monito- ring/, retrieved date: June 10, 2011.
    [11] ABB website, http://www.abb.com/, retrieved date: June 3, 2011.
    [12] D. W. Hart, Introduction to Power Electronics, Indiana: Prentice Hall, 2001.
    [13] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” in Proc. IEEE Power Tech Conference, June 23-26, 2003.
    [14] R. G. de Almeida and J. A. P. Lopes, “Participation of doubly fed induction wind generators in system frequency regulation,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 944-950, August 2007.
    [15] H. S. Ko, G. G. Yoon, and W. P. Hong, “Active use of DFIG-based variable-speed wind-turbine for voltage regulation at a remote location,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1916-1925, November 2007.
    [16] L. Yang, G. Y. Yang, Z. Xu, Z. Y. Dong, K. P. Wang, and X. Ma, “Optimal controller design of a doubly-fed induction generator wind turbine system for small signal stability enhancement,” IET Generation, Transmission, and Distribution, vol. 4, no. 5, pp. 579-597, December 2009.
    [17] M. Rahimi and M. Parniani, “Transient performance improvement of wind turbines with doubly fed induction generators using nonlinear control strategy,” IEEE Trans. Energy Conversion, vol. 25, no. 2, pp. 514-525, June 2010.
    [18] K. Yuen, K. Thomas, M. Grabbe, P. Deglaire, M. Bouquerel, D. Osterberg, and M. Leijon, “Matching a permanent magnet synchronous generator to a fixed pitch vertical axis turbine for marine current energy conversion,” IEEE Oceanic Engineering, vol. 34, no. 1, pp. 24-31, January 2009.
    [19] Y. Jiang, F. R. Meng, and Y. H. Luo, “Variable speed constant frequency tidal current energy generation and control strategy for maximum power point tracking and grid connection,” in Proc. 2009 International Sustainable Power Generation and Supply Conference, Nanjing, China, pp. 1-6, April 6-7, 2009.
    [20] M. Pahlevaninezhad, A. Saface, S. Eren, A. Bakhshai, and P. Jain “Adaptive nonlinear maximum power point tracker for a WECS based on permanent magnet synchronous generator fed by a matrix converter,” IEEE Trans. Energy Conversion, vol. 58, no. 1, pp. 2578-2583, September 2009.
    [21] S. Benelghali, M. H. Benbouzid, J. F. Charpentier, and I. Munteanu, “Experimental validation of a marine current turbine simulator: application to a permanent magnet synchronous generator-based system second-order sliding mode control,” IEEE Trans. Industrial Electronics, vol. 58, no. 1, pp. 118-126, January 2011.
    [22] M. L. Rahman and Y. Shirai, “Hybrid offshore-wind and tidal turbine (HOTT) energy conversion I (6-pulse GTO rectifier and inverter),” in Proc. 2008 IEEE International Sustainable Energy Technologies, Singapore, pp. 650-655, November 24-27, 2008.
    [23] Y. Da and A. Khaligh, “Hybrid offshore wind and tidal turbine energy harvesting system with independently controlled rectifiers,” in Proc. 2009 IEEE Industrial Electronics Conference, Porto, Portugal, pp. 4577-4582, November 3-5, 2009.
    [24] S. S. Rao and B. K. Murthy, “Control of induction generator in a Wells turbine based wave energy system,” in Proc. International Conference on Power Electronics and Drives Systems, vol. 2, pp. 1590-1594, November 2005.
    [25] B. K. Murthy and S. S. Rao, “Rotor side control of Wells turbine driven variable speed constant frequency induction generator,” Electric Power Components and Systems Journal, vol. 33, no. 6, pp. 587-596, July 2005.
    [26] L. Wang and Z.-J. Chen, “Stability analysis of a wave-energy conversion system containing a grid-connected induction generator driven by a Wells turbine,” IEEE Trans. Energy Conversion, vol. 25, no. 2, pp. 555-563, June 2010.
    [27] M. Amundarain, M. Alberdi, A. J. Garrido, and I. Garrido, “Modeling and simulation of wave energy generation plants: output power control,” IEEE Trans. Industrial Electronics, vol. 58, no. 1, pp. 105-117, January 2011.
    [28] K. R. Padiyar and N. Prabhu, “Modelling control design and analysis of VSC based HVDC transmission systems,” in Proc. 2004 Power System Technology International Conference, Singapore, November 21-24, 2004.
    [29] X. I. Koutiva, T. D. Vrionis, N. A. Vovos, and G. B. Giannakopoulos, “Optimal integration of an offshore wind farm to a weak AC grid,” IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 987-994, April 2006.
    [30] L. Xu, L. Yao, and C. Sasse, “Grid integration of large DFIG-based wind farms using VSC transmission,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 976-984, August 2007.
    [31] P. Bresesti, W. L. Kling, R. L. Hendriks, and R. Vailati, “HVDC connection of offshore wind farms to the transmission system,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 37-43, March 2007.
    [32] R. Li, S. Bozhko, and G. Asher, “Frequency control design for offshore wind farm with LCC-HVDC link connection,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1085-1092, May 2008.
    [33] C. Feltes, H. Wrede, F. W. Koch, and I. Erlich, “Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission,” IEEE Trans. Power Systems, vol. 24, no. 3, pp. 1537-1546, August 2009.
    [34] N. Prabhu and K. R. Padiyar, “Investigation of subsynchronous resonance with VSC-based HVDC transmission systems,” IEEE Trans. Power Delivery, vol. 24, no. 1, pp. 433-440, January 2009.
    [35] S. M. Muyeen, R. Takahashi, and J. Tamura, “Operation and control of HVDC-connected offshore wind farm,” IEEE Trans. Sustainable Energy, vol. 1, no. 1, pp. 30-37, April 2010.
    [36] X. Chen, H. Sun, J. Wen, W. J. Lee, X. Yuan, N. Li, and L. Yao, “Integrating wind farm to the grid using hybrid multiterminal HVDC technology,” IEEE Trans. Industry Applications, vol. 47, no. 2, pp. 965-972, March/April 2011.
    [37] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [38] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [39] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, pp. 3791-3795, December 1983.
    [40] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,民國九十五年六月。
    [41] 劉建宏,海流發電系統之特性分析,國立成功大學電機工程學系碩士論文,民國九十七年七月。
    [42] 陳贊家,波浪發電系統之特性分析,國立成功大學電機工程學系碩士論文,民國九十七年七月。
    [43] 熊家田,利用靜態同步補償器於混合大型離岸式風場與海流場之動態穩定度改善研究,國立成功大學電機工程學系碩士論文,民國九十八年七月。
    [44] 黎昭男,飛輪儲能系統於整合離岸式風場與潮流場之動態穩定度改善研究,國立成功大學電機工程學系碩士論文,民國九十九年七月。
    [45] 吳綜瑞,高壓直流傳輸系統連接於電力系統之功率潮流控制與穩定度分析,國立成功大學電機工程學系碩士論文,民國九十九年七月。

    下載圖示 校內:2016-08-30公開
    校外:2016-08-30公開
    QR CODE