簡易檢索 / 詳目顯示

研究生: 張笠筠
Chang, Li-Yun
論文名稱: 植入式骨釘之非接觸電刺激裝置
Implanted Bone-Nail Contactless Electrical Neurostimulator
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 83
中文關鍵詞: 植入式骨釘電刺激器供電監控單元非接觸電能傳輸
外文關鍵詞: Implanted bone nail electrical stimulator, Embedded type powering/monitoring unit, Contactless power transmission
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在將復健用電刺激器嵌入骨折手術所植入之骨釘中,結合非接觸式感應電能傳輸技術共構於骨釘內部,依據不同復健時期予以不同電刺激模式,並將組織溫度資訊呈現於體外人機監控介面。首先依規範採用13.56 MHz頻段之操作頻率,並根據操作頻率選擇合適激勵電路,接著利用磁場模擬軟體分析耦合結構磁通密度分布,藉此決定體外側、植入側線圈樣式與規格。電刺激策略採用單晶片及壓控電流源電路以達到定電流刺激模式,利用移幅鍵控調變機制使患者能根據患部不同復健情形改變刺激模式;並於植入側端加入移載鍵控調變機制,將組織溫度訊號回傳至體外人機監控介面,得使患者與醫生監控體內狀況而選用適當刺激波形。最後經由實驗驗證當仿體厚度為1.5公分內時,所研製之植入式骨釘電刺激器可正常供電,並可由體外電路調整電刺激輸出波形,以及呈現組織溫度資訊於體外監控介面。

    The thesis is to study the electrical stimulator embedded into bone nails, combined with contactless power transfer technique. By the tissue information displayed on monitor, patient can choose appropriate stimulate mode during different recovery period. First, operating frequency is chosen at 13.56 MHz, and different forms of coils are simulated and analyzed to design the structures of primary and secondary. The stimulating strategy is selected to current mode, and control signal would be sent to the implanted module by amplitude shift keying (ASK) modulation to change the output stimulating waveform. Besides, tissue temperature signals are retrieved and transmitted into primary coils by load shift keying, finally displayed on monitor. According to the experimental results, implanted bone nail stimulator can supply power, adjust the stimulation waveform by vitro module, and present tissue temperature information on the monitor while the gap is under 1.5cm.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 研究背景與目的 1 1-2 非接觸式電刺激裝置應用 5 1-3 研究方法 6 1-4 論文大綱 8 第二章 電刺激骨釘系統與非接觸式傳輸原理 9 2-1 前言 9 2-2 電刺激骨釘應用理論及分析 9 2-2-1 人體骨組織與骨癒合機制 9 2-2-2 骨壓電效應及電刺激理論 11 2-2-3 電刺激模式與波形選擇 12 2-2-4 電刺激策略 14 2-3 非接觸式感應電能傳輸 16 2-3-1 非接觸式感應電能傳輸原理 16 2-3-2 集膚效應 18 2-4 非理想變壓器等效模型分析 19 2-5 電能傳輸頻率選擇 21 2-6 正弦驅動電路選用 23 2-7 植入式生醫裝置感應耦合結構 27 第三章 骨釘電刺激器感應耦合結構分析 29 3-1 前言 29 3-2 整體系統架構簡述 29 3-3 感應耦合結構模擬與分析 30 3-3-1 印刷電路板感應線圈幾何形狀分析 30 3-3-2 螺旋形感應線圈分析 32 3-3-3 棒形感應線圈分析 35 3-4 感應結構之諧振電路分析 36 3-4-1 基本諧振電路分析 36 3-4-2 次級側諧振電路分析 37 第四章 植入式骨釘電刺激器硬體電路設計 42 4-1 前言 42 4-2 整體系統電路架構 42 4-3 體外側電路 43 4-3-1 射頻振盪電路 44 4-3-2 Class-E諧振變流器 45 4-3-3 開關驅動電路 49 4-3-4 移幅鍵控調變電路 50 4-3-5 編碼與解碼IC 52 4-4 植入側電路 53 4-4-1 整流濾波與穩壓電路 54 4-4-2 移幅鍵控解調電路 55 4-4-3 PIC單晶片控制電路 56 4-4-4 數位/類比轉換電路 58 4-4-5 壓控電流源電路 59 4-4-6 溫度感測電路 59 4-4-7 移載鍵控調變電路 61 4-5 植入式骨釘電刺激器系統設計流程 64 第五章 系統模擬與實驗結果 66 5-1 前言 66 5-2 系統規格與硬體電路 66 5-3 Simplis電路模擬 67 5-4 實驗結果波形量測與分析 70 5-5 耦合結構量測結果與分析 75 第六章 結論與未來研究方向 77 6-1 結論 77 6-2 未來研究方向 78 參考文獻 79

    [1] C. A. L. Bassett and R. O. Becker, “Generation of electric potentials in bone in response to mechanical stress,” Science, vol. 137, pp. 1063-1064, 1962.
    [2] C. A. L. Bassett, R. J. Pawluk, and R. O. Becker, “Effect of electric currents on bone in vivo,” Nature, vol. 204, pp. 652-654, 1964.
    [3] M. H. Shamos and L. S. Lavine, “Experimental model for studying the effect of electric current on bone in vivo,” Nature, vol. 224, pp. 1112-1113, 1969.
    [4] R. Dai, R. Stein, J. Andrew, K. B. James, and M. Wieler, “Application of tilt sensor in functional electrical stimulation,” IEEE Trans. Rehabil. Eng., vol. 4, no. 2, pp. 63-72, Jun. 1996.
    [5] R. Riener and T. Fuhr, “Patient-driven control of FES supported standing up: a stimulation study,” IEEE Trans. Rehabil. Eng., vol. 6, no. 2, pp. 113-124, Jun. 1988.
    [6] G. B. Joung and B. H. Cho, “An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer,” IEEE Trans., Power Electron., vol. 13, no. 6, pp. 1013 -1022, Nov. 1998.
    [7] S. Khosravani, N. Lahimgarzadeh, and A. Maleki, “Developing a stimu¬la-tor and interface for FES-cycling rehabilitation system,” in Proc. IEEE ICBME’11, 2011, pp. 175-180.
    [8] K. C. Wang, C. W. Hsu, T. J. Chan, T. S. Chien, and T. R. Chen, “Study of applying contactless power transmission system to battery charge,” in Proc. IEEE Int. Conf. Power Electronics and Drive System, 2009, pp. 257-262.
    [9] T. Yazaki, I. Morita, and H. Tanaka, “Demonstration of optical wireless USB 2.0 system with wireless power transfer,” in Proc. IEEE Int. Conf. Consumer Electronics, 2011, pp. 11-12.
    [10] T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, “An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy,” in Proc. IEEE Int. Conf. Engineering in Medicine and Biology Society, 2010, pp. 6531-6534.
    [11] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wire¬less power recharging for implantable bladder pressure chronic moni¬toring,” in Proc. IEEE NEMS’10, 2010, pp. 604-647.
    [12] C. S. Lin, S. G. Lin, C. F. Chang, H. H. Lai, and L. R. Chen, “Model of contactless power transfer system for linear track,” in Proc. IEEE PEDS’10, 2010, pp. 1075-1079.
    [13] J. Huh, S. Lee, C. Park, G. H. Cho, and C. T. Rim, “High performance inductive power transfer system with narrow rail width for on-line elec-tric vehicles,” in Proc. IEEE ECCE’10, 2010, pp. 647-651.
    [14] S. Ahn and J. Kim, “Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle,” in Proc. IEEE EUCAP’11, 2011, pp. 3979-3982.
    [15] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with universal inductive interface,” in Proc. PCCON’02, 2002, pp. 227-232.
    [16] K. Finkenzeller, RFID Handbook. 2nd ed., Wiely, 2003.
    [17] W. T. Liberson, H. J. Holmquest, D. Scot, M. Dow, and H. Illinois, “Func¬tional electrotherapy: stimulation of the personal nerve synchro-nized with the swing phase of the gait of hemiplegic patients,” in Proc. Ar¬chives of Physical Medicine &Rehabilitation, 1961, pp. 101-105.
    [18] S. Shapiro, R. Borgens, R. Pascuzzi, K. Roos, M. Groff, S, Purvines, R. B. Rodgers, S. Hagy, and P. Nelson, “Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial,” J. Neu¬rosur-gery, vol. 2, no. 1, pp. 1-3, Jan. 2005.
    [19] H. W. Chiu, M. L. Lin, C. W. Lin, I. H. Ho, W. T. Lin, P. H. Fang, Y. C. Lee, Y. R. Wen, and S. S. Lu, “Pain control on demand based on pulsed radio-frequency stimulation of the dorsal root ganglion using a batteryless implantable CMOS SoC,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 350-359, Dec. 2010.
    [20] http://en.wikipedia.org/wiki/Bone_healing, reference date: 2013/11
    [21] E. Fukuda and I. Yasuda, “On the piezoelectric effect of bone,” J. Phys. Soc. Japan, vol. 12, no. 10, pp.1158-1162, 1957.
    [22] P. R. Supronowicz, K. R.Ullmann, P. M. Ajayan, B. P. Arulanandam, D. W. Metzger, and R. Bizios, “Electrical stimulation enhances cellular/molecular functions of osteoblasts relevant to new bone formation in vitro,” in Proc. IEMBS’01, 2001, pp. 2979-2980.
    [23] D. N. Rushton, “Functional electrical stimulation,” Physiol. Meas., vol. 18, no. 4, pp. 241-275, 1997.
    [24] O. Macherey, A. V. Wieringen, R. P. Carlyon, J. M. Deeks, and J. Wouters, “Asymmetric pulses in cochlear implants: effect of pulse shape, polarity, and rate,” JARO, vol. 7, pp. 253-266, May 2006.
    [25] http://www.motc.gov.tw/post/home.jsp?id=888&websitelink=artwebsite.jsp&parentpath=0,364,885, reference date: 2013/7
    [26] ICNIRP, “Guidelines for limiting exposure to time-varying electric magnetic, and electromagnetic fields (up to 300GHz),” Health Physics, vol. 74, 1998.
    [27] N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168-176, Jun. 1975.
    [28] C. M. Zierhofer and E. S. Hochmair, “High-efficiency cou¬pl¬ing insen-sitive transcutaneous power and data transmission via an inductive link,” IEEE Trans. Biomed. Eng., vol. 37, no. 7, pp. 716-722, Jul. 1990.
    [29] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
    [30] F. Sato, T. Nomoto, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electric stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, Jul. 2004.
    [31] A. Qusba, A. Kumar, J. H. So, G. J. Hayes, M. D. Dickey, and G. Lazzi, “On the design of microfluidic implant coil for flexible telemetry system,” IEEE Sensor J., vol. 14, no. 4, pp. 1074-1080, Apr. 2014.
    [32] J. Saleem, A. Majid, R. Ambatapudi, H. B. Kotte, and K. Bertilsson, “Coreless printed circuit board (PCB) transformers with multiple secondary windings for complementary gate drive circuits,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 431-437, May 1999.
    [33] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, Feb. 2004.
    [34] U. M. Jow and M. Ghovanloo, “Optimization of data coils in a multiband wireless link for neuroprosthetic implantable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 5, pp. 301-310, Oct. 2010.
    [35] http://en.wikipedia.org/wiki/Gel_electrophoresis, reference date: 2014/1
    [36] P. R. Troyk and M. A. K. Schwan, “Closed loop class E transcutaneous power and data link for microimplants,” IEEE Trans. Biomed. Eng., vol. 39, no. 6, pp. 589-599, Jun. 1992.
    [37] F. H. Raab, “Idealized operation of the class E tuned power amplifier,” IEEE Trans. Circuits and Systems, vol. CAS-24, no. 12, pp. 725-735, Dec. 1977.
    [38] B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, “A sin¬gle channel implantable microstimulator for functional neuromuscular stimulation,” IEEE Trans. Biomed. Eng., vol. 44, no. 10, pp. 909-920, Oct. 1997.
    [39] Z. Tang, B. Smith, J. H. Schild, and P. H. Peckham, “Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator,” IEEE Trans. Biomed. Eng., vol. 42, no. 5, pp. 524-528, May 1995.
    [40] M. Ghovanloo and S. Atluri, “An integrated full-wave CMOS rectifier with built-in back telemetry for RFID and implantable biomedical applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3328-3334, Nov. 2008.
    [41] Y. Hu, J. G. Gervais, and M. Sawan, “High power efficiency inductive link with full duplex data communication,” in Proc. IEEE ICECS’02, 2002, pp. 359-362.
    [42] 詹惠雯,探討脈衝式電磁場促進類骨母細胞增生之機轉,私立中原大學醫學工程學系碩士論文,2003年。
    [43] 陳智崇,發展雙向無線生醫微系統用以生理訊號之量測,國立成功大學醫學工程研究所碩士論文,2004年。
    [44] 劉彥田,非接觸式射頻電能傳輸技術於植入式神經電刺激器之研究,國立成功大學電機工程學系碩士論文,2010年。
    [45] 林哲立,植入式神經電刺激器之非接觸式射頻饋電電路之研製,國立成功大學電機工程學系碩士論文,2013年。
    [46] 沈鳳麒,具非接觸式供電監控單元之植入型功能電刺激器,國立成功大學電機工程學系碩士論文,2014年。

    下載圖示 校內:2018-08-12公開
    校外:2018-08-12公開
    QR CODE