簡易檢索 / 詳目顯示

研究生: 李瑞中
Lee, Ruei-Zhung
論文名稱: ZnTiNb2O8微波介電陶瓷之特性改善與應用
Improved Dielectric Properties and Applications of ZnTiNb2O8 Microwave Dielectric Ceramics
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 116
中文關鍵詞: 微波介電特性陶瓷材料濾波器
外文關鍵詞: microwave dielectric properties, ceramics material, filter
相關次數: 點閱:234下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以ZnTiNb2O8(εr~34、Qf ~42,500GHz、τf ~-52ppm/℃)為主體,在(Zn1-xAx)Ti (Nb5+1-yBy)2O8的系統中,用Mg2+及Ta5+個別取代Zn2+及Nb5+之位置,達到微波介電性質之改善,使其降低損耗。為了使負的共振頻率溫度飄移係數,使其趨近於零,選擇添加正值共振頻率飄移係數的鈣鈦礦材料CaTiO3 (+800 ppm/°C),藉由不同比例混相,量測出其τf最接近於零的比例。
    此外,本論文將分別以FR4、Al2O3及0.8(Zn0.95Mg0.05)TiNb2O8-0.2CaTiO3作為基板將平行線耦合帶通濾波器應用於其上,濾波器規格為:中心頻率2.4GHz、頻寬為12%,並使用電磁模擬軟體來進行電腦模擬,比較使用不同基板的濾波器響應以及元件尺寸。由結果可觀察到應用在同一電路上,具有高介電常數的自製基板可以達到縮小電路面積的效果,且自製基板的共振頻率飄移係數趨近於零( + 5ppm/℃> τf > - 5ppm/℃),使元件具有很好的頻率穩定性。

    The improvement of microwave dielectric properties of ZnTiNb2O8(εr~34、Qf ~42,500GHz、τf ~-52ppm/℃), discussing in the system of (Zn1-xAx)Ti (Nb1-yBy)2O8, we elevated their quality factor through the effect of Mg2+, Ta5+ substitution for Zn2+, Nb5+ respectively to reduce its loss. In order to adjust their negative τf, CaTiO3 perovskite which have positive τf had been add. By any ratio of doped, we can obtain the best ratio which their τf is almost closed to zero.
    Besides.a bandpass filter using coupled microstrip-line resonators have been designd on FR4、Al2O3and 0.8(Zn0.95Mg0.05)TiNb2O8-0.2CaTiO3 substrates. The band-pass frequency is 2.4GHz, the bandwidth is 12% and simulated by electromagnetic simulation software, HESS. We could find that with the higher dielectric constant, our filter could diminish the scale of size and because of its temperature coefficient of resonant frequency (+ 5ppm/℃> τf > - 5ppm/℃), it has better frequency stability

    摘要 Ⅰ Abstract Ⅱ 誌謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 第二章 介電材料原理 3 2-1材料的燒結 3 2-1-1材料燒結之擴散方式 3 2-1-2材料燒結之過程 4 2-1-3燒結的種類 4 2-2微波陶瓷材料之介電特性分析 6 2-2-1介電係數(Dielectric constant:K、 ) 6 2-2-2介電品質因數(Quality factor:Q) 9 2-2-3共振頻率之溫度係數(Temperature coefficient of resonant frequency:τf) 11 2-3介電共振器(Dielectric resonator:DR) 12 2-4鈳鐵礦(Columbite)結構與鈳鉭鐵礦(Ixiolite)結構 16 2-5鈣鈦礦結構(Perovskite structure) 18 第三章 微帶線及濾波器原理 20 3-1 濾波器原理 20 3-1-1濾波器的簡介 20 3-1-2濾波器之種類及其頻率響應 20 3-2 微帶線原理 24 3-2-1 微帶傳輸線的簡介 24 3-2-2 微帶線的傳輸模態 24 3-2-3 微帶線各項參數公式計算及考量 25 3-2-4 微帶線的不連續效應 28 3-2-5 微帶線的損失 35 3-3 微帶線諧振器種類 36 3-3-1 λ/4短路微帶線諧振器 36 3-3-2 λ/2開路微帶線諧振器 37 3-4 共振器間的耦合形式 39 3-4-1 電場耦合 39 3-4-2 磁場耦合 43 3-4-3 混和耦合 46 3-5 零度饋入(非對稱性饋入) 48 3-6 平行耦合線(Parallel Coupled-Line;PCLs)原理 51 3-7 平行耦合線帶通濾波器 54 3-7-1平行耦合(parallel coupling) 55 3-7-2改良式平行耦合濾波器 56 第四章 實驗程序與量測方法 60 4-1 微波介電材料的製備 60 4-1-1 粉末的配製與球磨 60 4-1-2 粉末的煆燒 60 4-1-3 加入黏劑、過篩 61 4-1-4 壓模成型、去黏劑及燒結 61 4-2 微波介電材料的量測與分析 63 4-2-1 X-Ray分析 63 4-2-2 SEM、EDS分析 63 4-2-3密度測量 63 4-2-4微波介電特性之量測 64 4-3 濾波器的製作與量測 70 4-3-1濾波器製作 70 4-3-2濾波器量測 71 第五章 實驗結果與討論 73 5-1 ZnTi(Nb1-xTax)2O8 微波特性之探討 74 5-2 (Zn1-xMgx)TiNb2O8微波特性之討論 82 5-3 (1-x)(Zn0.95Mg0.05)TiNb2O8-xCaTiO3微波介電特性之探討 90 5-4濾波器響應 104 5-4-1 使用FR4(玻璃纖維基板)之模擬與實作結果 105 5-4-2 使用Al2O3之模擬與實作結果 106 5-4-3 使用0.8(Zn0.95Mg0.05)TiNb2O8-0.2CaTiO3之模擬與實作結果 108 第六章 結論 112 參考文獻 114

    [1] H. M. O’bryan, J. Thomson, J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
    [2] G. Wolfram, H. E. Göbel, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2)” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
    [3] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values” J. J. Appl. phys., 33 [9B] 5466–5470 (1994).
    [4] Y. Ohishi, Y. Miyauchi, H. Ohsato, K. I. Kakimoto, “Controlled Temperature Coefficient of Resonant Frequency of Al2O3–TiO2 Ceramics by Annealing Treatment” J. J. Appl. phys., 43 [6A] L749–L751 (2004).
    [5] C. L. Huang, T. J. Yang, C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a Compensator” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
    [6] D. W. Kim, D. Y. Kim, K. S. Hong. “Phase relations and microwave dielectric
    properties of ZnNb2O6–TiO2” J. Master. Res., Vol.15, No. 6, Jun 2000
    [7] D. W. Kim, J. H. Kim, J. R. Kim, K. S. Hong, “Phase Constitutions and
    Microwave Dielectric Properties of Zn3Nb2O8–TiO2” Jpn. J. Appl. Phys. Vol.
    40 (2001) pp.5994-5998
    [8] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
    [9] J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
    [10] W. J. Huppmann and G. Petzow, Sintering Processes, Plenum Press, (1979).
    [11] J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys” J. Mater. Sci., 24 [2] 500–504 (1989).
    [12] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
    [13] D. Kajfez, A. W. Glisson, and J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616(1984).

    [14] D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators” Microwave System News., 13 152–161 (1983).
    [15] D. Kajfez and P. Guillon, Dielectric Resonators, Artech House (1989).
    [16] 吳朗, 電工材料, 滄海書局, (1998).
    [17] 余樹楨, 晶體之結構與性質, 渤海堂文化公司, (2007).
    [18] R. C. Pullar, “The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6):A Critical Review, ”J. Am. Cream. Soc.,92[8] 1845-1848(2009)
    [19] Hsin-Cheng Lee,“ Zn(Nb1-xTax)2O6陶瓷材料其微波介電性質與結構之探討”,NCKU Department of Resources Engineering(2010)
    [20] J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particle” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
    [21] W. J. Huppmann and G. Petzow, Sintering Processes, Plenum Press, (1979).
    [22] R. M. German, Liquid Phase Sintering, Plenum Press, (1985).
    [23] J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).
    [24] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
    [25] R. L. Geiger, P. E. Allen, N. R. Strader, “VLSI Design Techniques for Analog and Digital Circuits” McGraw-Hill, (1990).
    [26] R. A. Pucel, D. J. Masse, C. P. Hartwig, “Losses in Microstrip,” 16 [6] 342–350 (1968).
    [27] K. C. Gupta , R. Garg, I. Bahl , and E Bhartis , “Microstrip Lines and Slotlines” ,
    Second Edition, Artech House, Boston, (1996).
    [28] J. S. Hong, M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications” John Wiley & Sons, (2001).
    [29] G. Kompa, “Practical Microstrip Design and Applications” Artech House, (2005).
    [30] 張盛富, 戴明鳳, “無線通信之射頻被動電路設計,” 全華出版社, (1998).
    [31] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures” Artech House, (1980).
    [32] E. J. Denlinger, “Losses of Microstrip Lines” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
    [33] J. S. Wong, "Microstrip Tapped-Line Filter Design" Microwave Theory and
    Techniques”, IEEE Transactions on, vol. 27, pp. 44-50, 1979.
    [34] C. M. Tsai, S. Y. Lee, C. C. Tsai, “Performance of a Planar Filter Using a 0 Feed Structure” IEEE Trans. Microwave Theory Tech., 50 [10] 2362–2367 (2002).
    [35] David M. Pozar, ”Microwave Engineering”, John Wiley &Sons, Inc, (2005).

    [36] S.B. Cohn, "Parallel-coupled transmission-line-resonator filters" IRE. Trans.
    Microw. Theory Tech., vol. MTT-6, no. 2, pp. 223-231, Apr.1958.
    [37] H. -M. Lee and C. -M. Tsai, "Improved coupled-microstrip filter design using
    effective even-mode and odd-mode characteristic impedances" IEEE Trans.
    Microw. Theory Tech., vol. 53, no. 9, pp. 2812-2818, Sep.(2005).
    [38] M. Matsuo, H. yabuki and M. Makimoto, "Improvement of stop-band
    characteristics for half-wavelength resonator filters" IEICE Trans. Electron., vol.
    E85-C, no. 7, pp. 1472-1477, Jul. 2002.
    [39] S. Luo, L. Zhu, S. Sun” Coupled Microstrip-Line Bandpass Filters with Wide
    Upper Stopband and High Frequency Selectivity” Institute of Microwave
    Techniques,IEEE,2010
    [40] D.Kajfez, “Computed Modal Field Distribution for Isolated Dielectric
    Resonators” IEEE. Trans. MTT, MTT-32, 1609-1616 (1984).
    [41] D. Kajfez, “Basic principle give understanding of Dielectric Wave-guides and
    Resonators” Microwave System News, 13, 152-161 (1983).
    [42] D. Kajfez and P. Guillon, Dielectric Resontors, Artech House, Dedham,
    Mass.(1979)
    [43] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of
    Measuring Inductive Capacities in the Millimeter range” IEEE Trans. MTT,
    vol. MTTS, pp. 402-410, 1960.
    [44] D. W. Kim, J. H. Kim, J. R. Kim, K. S. Hong” Phase Constitutions and
    Microwave Dielectric Properties of Zn3Nb2O8–TiO2” Jpn. J. Appl. Phys. Vol. 40
    pp. 5994–5998(2001)
    [45] D. W. Kim, D. Y. Kim, K. S. Hong” Phase relations and microwave dielectric
    properties of ZnNb2O6–TiO2” J. Mater. Res., Vol. 15, No. 6, Jun (2000)
    [46] Qingwei Liao, Lingxia Li, Ping Zhang, Lifeng Cao, Yemei Han, Correlation
    of crystal structure and microwave dielectric Properties for Zn(Ti1-xSnx)Nb2O8
    ceramics, Mater. Sci. Eng., B ,MSB-12634 (2010)
    [47]H. J. Lee, K. S. Hong, S. J. Kim”Dielectric properties of Mnb2O6 compounds(where
    M=Ca,Mn,Co,Ni,OR Zn)”Marterials Research Bulletin,vol.32, No.7,pp.847-855,1997
    [48]E. S. Kim, D. H. Kang”Microwave dielectric properties of
    (A2+1/3B5+2/3)0.5Ti0.5O2(A2+=Zn,Mg,B5+=Nb,Ta)ceramics”IEEE Transactions on
    ultrasonics,Ferroelectrics, and frequency control, Vol.55,NO. 5,May 2008

    下載圖示 校內:2021-12-30公開
    校外:2021-12-30公開
    QR CODE