| 研究生: |
李瑞中 Lee, Ruei-Zhung |
|---|---|
| 論文名稱: |
ZnTiNb2O8微波介電陶瓷之特性改善與應用 Improved Dielectric Properties and Applications of ZnTiNb2O8 Microwave Dielectric Ceramics |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 微波介電特性 、陶瓷材料 、濾波器 |
| 外文關鍵詞: | microwave dielectric properties, ceramics material, filter |
| 相關次數: | 點閱:234 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以ZnTiNb2O8(εr~34、Qf ~42,500GHz、τf ~-52ppm/℃)為主體,在(Zn1-xAx)Ti (Nb5+1-yBy)2O8的系統中,用Mg2+及Ta5+個別取代Zn2+及Nb5+之位置,達到微波介電性質之改善,使其降低損耗。為了使負的共振頻率溫度飄移係數,使其趨近於零,選擇添加正值共振頻率飄移係數的鈣鈦礦材料CaTiO3 (+800 ppm/°C),藉由不同比例混相,量測出其τf最接近於零的比例。
此外,本論文將分別以FR4、Al2O3及0.8(Zn0.95Mg0.05)TiNb2O8-0.2CaTiO3作為基板將平行線耦合帶通濾波器應用於其上,濾波器規格為:中心頻率2.4GHz、頻寬為12%,並使用電磁模擬軟體來進行電腦模擬,比較使用不同基板的濾波器響應以及元件尺寸。由結果可觀察到應用在同一電路上,具有高介電常數的自製基板可以達到縮小電路面積的效果,且自製基板的共振頻率飄移係數趨近於零( + 5ppm/℃> τf > - 5ppm/℃),使元件具有很好的頻率穩定性。
The improvement of microwave dielectric properties of ZnTiNb2O8(εr~34、Qf ~42,500GHz、τf ~-52ppm/℃), discussing in the system of (Zn1-xAx)Ti (Nb1-yBy)2O8, we elevated their quality factor through the effect of Mg2+, Ta5+ substitution for Zn2+, Nb5+ respectively to reduce its loss. In order to adjust their negative τf, CaTiO3 perovskite which have positive τf had been add. By any ratio of doped, we can obtain the best ratio which their τf is almost closed to zero.
Besides.a bandpass filter using coupled microstrip-line resonators have been designd on FR4、Al2O3and 0.8(Zn0.95Mg0.05)TiNb2O8-0.2CaTiO3 substrates. The band-pass frequency is 2.4GHz, the bandwidth is 12% and simulated by electromagnetic simulation software, HESS. We could find that with the higher dielectric constant, our filter could diminish the scale of size and because of its temperature coefficient of resonant frequency (+ 5ppm/℃> τf > - 5ppm/℃), it has better frequency stability
[1] H. M. O’bryan, J. Thomson, J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
[2] G. Wolfram, H. E. Göbel, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2)” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
[3] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values” J. J. Appl. phys., 33 [9B] 5466–5470 (1994).
[4] Y. Ohishi, Y. Miyauchi, H. Ohsato, K. I. Kakimoto, “Controlled Temperature Coefficient of Resonant Frequency of Al2O3–TiO2 Ceramics by Annealing Treatment” J. J. Appl. phys., 43 [6A] L749–L751 (2004).
[5] C. L. Huang, T. J. Yang, C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a Compensator” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
[6] D. W. Kim, D. Y. Kim, K. S. Hong. “Phase relations and microwave dielectric
properties of ZnNb2O6–TiO2” J. Master. Res., Vol.15, No. 6, Jun 2000
[7] D. W. Kim, J. H. Kim, J. R. Kim, K. S. Hong, “Phase Constitutions and
Microwave Dielectric Properties of Zn3Nb2O8–TiO2” Jpn. J. Appl. Phys. Vol.
40 (2001) pp.5994-5998
[8] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[9] J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
[10] W. J. Huppmann and G. Petzow, Sintering Processes, Plenum Press, (1979).
[11] J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys” J. Mater. Sci., 24 [2] 500–504 (1989).
[12] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[13] D. Kajfez, A. W. Glisson, and J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616(1984).
[14] D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators” Microwave System News., 13 152–161 (1983).
[15] D. Kajfez and P. Guillon, Dielectric Resonators, Artech House (1989).
[16] 吳朗, 電工材料, 滄海書局, (1998).
[17] 余樹楨, 晶體之結構與性質, 渤海堂文化公司, (2007).
[18] R. C. Pullar, “The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6):A Critical Review, ”J. Am. Cream. Soc.,92[8] 1845-1848(2009)
[19] Hsin-Cheng Lee,“ Zn(Nb1-xTax)2O6陶瓷材料其微波介電性質與結構之探討”,NCKU Department of Resources Engineering(2010)
[20] J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particle” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
[21] W. J. Huppmann and G. Petzow, Sintering Processes, Plenum Press, (1979).
[22] R. M. German, Liquid Phase Sintering, Plenum Press, (1985).
[23] J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).
[24] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[25] R. L. Geiger, P. E. Allen, N. R. Strader, “VLSI Design Techniques for Analog and Digital Circuits” McGraw-Hill, (1990).
[26] R. A. Pucel, D. J. Masse, C. P. Hartwig, “Losses in Microstrip,” 16 [6] 342–350 (1968).
[27] K. C. Gupta , R. Garg, I. Bahl , and E Bhartis , “Microstrip Lines and Slotlines” ,
Second Edition, Artech House, Boston, (1996).
[28] J. S. Hong, M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications” John Wiley & Sons, (2001).
[29] G. Kompa, “Practical Microstrip Design and Applications” Artech House, (2005).
[30] 張盛富, 戴明鳳, “無線通信之射頻被動電路設計,” 全華出版社, (1998).
[31] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures” Artech House, (1980).
[32] E. J. Denlinger, “Losses of Microstrip Lines” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[33] J. S. Wong, "Microstrip Tapped-Line Filter Design" Microwave Theory and
Techniques”, IEEE Transactions on, vol. 27, pp. 44-50, 1979.
[34] C. M. Tsai, S. Y. Lee, C. C. Tsai, “Performance of a Planar Filter Using a 0 Feed Structure” IEEE Trans. Microwave Theory Tech., 50 [10] 2362–2367 (2002).
[35] David M. Pozar, ”Microwave Engineering”, John Wiley &Sons, Inc, (2005).
[36] S.B. Cohn, "Parallel-coupled transmission-line-resonator filters" IRE. Trans.
Microw. Theory Tech., vol. MTT-6, no. 2, pp. 223-231, Apr.1958.
[37] H. -M. Lee and C. -M. Tsai, "Improved coupled-microstrip filter design using
effective even-mode and odd-mode characteristic impedances" IEEE Trans.
Microw. Theory Tech., vol. 53, no. 9, pp. 2812-2818, Sep.(2005).
[38] M. Matsuo, H. yabuki and M. Makimoto, "Improvement of stop-band
characteristics for half-wavelength resonator filters" IEICE Trans. Electron., vol.
E85-C, no. 7, pp. 1472-1477, Jul. 2002.
[39] S. Luo, L. Zhu, S. Sun” Coupled Microstrip-Line Bandpass Filters with Wide
Upper Stopband and High Frequency Selectivity” Institute of Microwave
Techniques,IEEE,2010
[40] D.Kajfez, “Computed Modal Field Distribution for Isolated Dielectric
Resonators” IEEE. Trans. MTT, MTT-32, 1609-1616 (1984).
[41] D. Kajfez, “Basic principle give understanding of Dielectric Wave-guides and
Resonators” Microwave System News, 13, 152-161 (1983).
[42] D. Kajfez and P. Guillon, Dielectric Resontors, Artech House, Dedham,
Mass.(1979)
[43] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of
Measuring Inductive Capacities in the Millimeter range” IEEE Trans. MTT,
vol. MTTS, pp. 402-410, 1960.
[44] D. W. Kim, J. H. Kim, J. R. Kim, K. S. Hong” Phase Constitutions and
Microwave Dielectric Properties of Zn3Nb2O8–TiO2” Jpn. J. Appl. Phys. Vol. 40
pp. 5994–5998(2001)
[45] D. W. Kim, D. Y. Kim, K. S. Hong” Phase relations and microwave dielectric
properties of ZnNb2O6–TiO2” J. Mater. Res., Vol. 15, No. 6, Jun (2000)
[46] Qingwei Liao, Lingxia Li, Ping Zhang, Lifeng Cao, Yemei Han, Correlation
of crystal structure and microwave dielectric Properties for Zn(Ti1-xSnx)Nb2O8
ceramics, Mater. Sci. Eng., B ,MSB-12634 (2010)
[47]H. J. Lee, K. S. Hong, S. J. Kim”Dielectric properties of Mnb2O6 compounds(where
M=Ca,Mn,Co,Ni,OR Zn)”Marterials Research Bulletin,vol.32, No.7,pp.847-855,1997
[48]E. S. Kim, D. H. Kang”Microwave dielectric properties of
(A2+1/3B5+2/3)0.5Ti0.5O2(A2+=Zn,Mg,B5+=Nb,Ta)ceramics”IEEE Transactions on
ultrasonics,Ferroelectrics, and frequency control, Vol.55,NO. 5,May 2008