簡易檢索 / 詳目顯示

研究生: 吳岱祐
Wu, Tai-You
論文名稱: 具耦合電感與切換電容之疊加型高升壓直流-直流轉換器
A Cascoded High Step-Up DC-DC Converter with Coupled Inductor and Switched Capacitor
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 61
中文關鍵詞: 高升壓耦合電感切換電容
外文關鍵詞: high step-up, coupled inductor, switched capacitor
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一高升壓比直流-直流轉換器,此架構藉由耦合電感的特性與切換電容結合以降低電容上的電流突波,且因為耦合電感之漏感續流特性減少二極體之逆向回復問題所帶來的損耗,並透過電容電壓的疊加降低輸入端傳輸能量至負載時的電流,以此獲得高電壓增益且提高效率。本文首先對提出之電路架構進行電路動作原理分析、連續與非連續模式下電路穩態特性及重要元件參數設計準則。最後以數位信號處理器TMS320F28335作為主控制器,實作一輸入電壓為24 - 38 V、輸出電壓為400 V 、額定輸出功率為300 W及切換頻率為50 kHz的轉換器。由實驗結果得知在輸入電壓為24 V時滿載效率為89.7%;輸入電壓為38 V時滿載效率為91%,而最高效率為輸入電壓為38 V在60 %負載時可達94 %。

    In this thesis, a step-up DC-DC converter is proposed. This topology reduces the current spike on the switched capacitor and revers recovery problem of the diode by leakage inductor of coupled inductor. The cascaded technology not only increce output voltage in efficiently, but also decrece input current when input transfers energy to output. The steady-state operating principle of continuous conduct modes and discontinuous conduct modes, and key parameters design are discussed in detail. Finally, the digital signal processor, TMS320F28335 is used to realize the switching control and laboratory prototype with input voltage 24 – 38 V, output voltage 400 V, and rated output power 300 W was built and demonstrated. According to experimental results, the efficiency is 89.7% of full load at input voltage is 24 V, the eifficiency is 91% of full load at input voltage is 38 V, and the highest eifficiency is 94% at input voltage is 38 V.

    第一章 緒論 1 1.1 研究背景與目的 1 1.2 論文大綱 4 第二章 升壓型直流-直流轉換器架構之簡介 5 2.1 無變壓器之高升壓型轉換器 5 2.2 具切換式電容技術之轉換器 10 2.3 具耦合電感技術之轉換器 14 2.4 結合耦合電感及切換式電容技術之轉換器 18 2.5 比較與討論 21 第三章 具耦合電感與切換電容之疊加型高升壓直流-直流轉換器 22 3.1 電路於連續導通模式下之動作原理分析 24 3.2 電路於非連續導通模式下之動作原理分析 32 第四章 硬體電路參數設計與實驗結果 44 4.1 系統規格與重要參數設計 44 4.2 實驗結果與討論 48 第五章 結論與未來展望 56 5.1 結論 56 5.2未來展望 57 參考文獻 58

    [1] Z. Zeng, H. Yi, F. Wang, F. Zhuo, and Z. Wang, "A novel control strategy of photovoltaic-battery system for restraining the photovoltaic power fluctuations and suppressing the low frequency oscillations of power system," in Proc. IPEMC-ECCE Asia, pp. 2978-2982, 2016.
    [2] G. Wu, X. Ruan, and Z. Ye, "Nonisolated high step-up DC-DC converters adopting switched-capacitor cell," IEEE Trans. on Ind. Electron., vol. 62, no. 1, pp. 383-393, Jan. 2015.
    [3] B. Yang, W. Li, Y. Zhao, and X. He, "Design and analysis of a grid-connected photovoltaic power system," IEEE Trans. on Power Electron., vol. 25, no. 4, pp. 992-1000, April. 2010.
    [4] Z. Liang, R. Guo, J. Li, and A. Q. Huang, "A high-efficiency PV module-integrated DC-DC converter for PV energy harvest in FREEDM systems," IEEE Trans. on Power Electron., vol. 26, no. 3, pp. 897-909, March. 2011.
    [5] T. Qian, "A converter combination scheme for efficiency improvement of PV systems," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 65, no. 11, pp. 1668-1672, Nov. 2018.
    [6] W. Hassan, D. D. Lu, and W. Xiao, "Analysis and experimental verification of a single-switch high-voltage gain ZCS DC–DC converter," IET Power Electron., vol. 12, no. 8, pp. 2146-2153, 2019.
    [7] K. C.Tseng, J. T. Lin, and C. C. Huang, "High step-up converter with three-winding coupled inductor for fuel cell energy source applications," IEEE Trans. on Power Electron., vol. 30, no. 2, pp. 574-581, Feb. 2015.
    [8] H. Bahrami, S. Farhangi, H. Iman-Eini, and E. Adib, "A new interleaved coupled-inductor nonisolated soft-switching bidirectional DC–DC converter with high voltage gain ratio," IEEE Trans. on Ind. Electron., vol. 65, no. 7, pp. 5529-5538, July 2018.
    [9] R. Singh, A. Kumar Sharma, A. Pareek, and A. Gautam, "Non-isolated hybrid modular DC-DC converter with twin coupled-inductors for DC microgrid," in Proc. International Conference on Inventive Research in Computing Applications, pp. 1212-1217, 2018.
    [10] D. C. Lu, D. K. W. Cheng, and Y. S. Lee, "A single-switch continuous-conduction-mode boost converter with reduced reverse-recovery and switching losses," IEEE Trans. on Ind. Electron., vol. 50, no. 4, pp. 767-776, Aug. 2003.
    [11] L. S. Yang, T. J. Liang, and J. F. Chen, "Transformerless DC–DC converters with high step-up voltage gain," IEEE Trans. on Ind. Electron., vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
    [12] K. Yue, S. Li, D. Kong, H. You, L. Pang, Q. Zhang, and L. Liu, "Reverse recovery time characteristics of high power thyristors," in Proc. IEEE International Conference on High Voltage Engineering and Application, pp. 1-4, 2016.
    [13] B. R. Lin, H. K. Chiang, K. C. Chen, and D. Wang, "Analysis, design and implementation of an active clamp flyback converter," in Proc. International Conference on Power Electronics and Drives Systems, pp. 424-429, 2005.
    [14] G. Spiazzi, P. Mattavelli, and A. Costabeber, "High step-up ratio flyback converter with active clamp and voltage multiplier," IEEE Trans. on Power Electron., vol. 26, no. 11, pp. 3205-3214, Nov. 2011.
    [15] Q. Zhao, F. Tao, and F. C. Lee, "A front-end DC/DC converter for network server applications," in Proc. IEEE 32nd Annual Power Electronics Specialists Conference, pp. 1535-1539 vol. 3, 2001.
    [16] A. Ghasemi, E. Adib, and M. R. Mohammadi, "A new isolated SEPIC converter with coupled inductors for photovoltaic applications," in Proc. Iranian Conference on Electrical Engineering, pp. 1-5, 2011.
    [17] K. Zaoskoufis and E. C. Tatakis, "A thorough analysis for the impact of the coupling coefficient on the behavior of the coupled inductor high step-up converters," IEEE Trans. on Power Electron., vol. 35, no. 8, pp. 8287-8302, Aug. 2020.
    [18] F. S. F. Silva, Antônio A. A Freitas, Sérgio Daher, Saulo C. Ximenes, Sarah K. A. Sousa, M. S. Edilson, Fernando L. M. Antunes, and Cícero M. T. Cruz "High gain DC-DC boost converter with a coupling inductor," in Proc. Brazilian Power Electron. Conference, pp. 486-492, 2009.
    [19] L. Shu, T. Liang, L. Yang, and R. Lin, "Transformerless high step-up DC-DC converter using cascode technique," in Proc. IPEC, pp. 63-67, 2010.
    [20] X. Ding, D. Yu, Y. Song, and B. Xue, "Switched-coupled inductor DC-DC converters," in Proc. IEEE International Conference on Industrial Electronics for Sustainable Energy Systems, pp. 174-179, 2018.
    [21] A. Ghasemi, S. F. Eilaghi, and E. Adib, "A new non-isolated high step-up SEPIC converter for photovoltaic applications," in Proc. Power Electron. and Drive Systems Technology, pp. 51-56, 2012.
    [22] S. Sharifi and M. Monfared, "Series and tapped switched-coupled-inductors impedance networks," IEEE Trans. on Ind. Electron., vol. 65, no. 12, pp. 9498-9508, Dec. 2018.
    [23] I. Laird, D. D. Lu, and V. G. Agelidis, "High-gain switched-coupled-inductor boost converter," in Proc. International Conference on Power Electronics and Drive Systems, pp. 423-428, 2009.
    [24] J. Xu, "An analytical technique for the analysis of switching DC-DC converters,"in Proc. IEEE International Sympoisum on Circuits and Systems, pp. 1212-1215, 1991.
    [25] F. L. Luo and H. Ye, "Positive output cascade boost converters," IEE Proceedings - Electric Power Applications, vol. 151, no. 5, pp. 590-606, 9 Sept. 2004.
    [26] M. Lotfi Nejad, B. Poorali, E. Adib, and A. A. Motie Birjandi, "New cascade boost converter with reduced losses," IET Power Electron., vol. 9, no. 6, pp. 1213-1219, 2016.
    [27] Y. Gu, Y. Chen, B. Zhang, D. Qiu, and F. Xie, "High step-up DC–DC converter with active switched LC-network for photovoltaic systems," IEEE Trans. on Energy Conversion, vol. 34, no. 1, pp. 321-329, March 2019.
    [28] L. S. Yang, T. J. Liang, and J. F. Chen, "Transformerless DC–DC converters with high step-up voltage gain," IEEE Trans. on Ind. Electron., vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
    [29] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 2, pp. 687-696, March 2008.
    [30] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Hybrid switched-capacitor-Cuk/Zeta/Sepic converters in step-up mode," in Proc. IEEE International Symposium on Circuits and Systems, pp. 1310-1313 Vol. 2, 2005.
    [31] T. J. Liang and K. C. Tseng, "Analysis of integrated boost-flyback step-up converter," IEE Proceedings - Electric Power Appl., vol. 152, no. 2, pp. 217-225, 4 March 2005.
    [32] K. C. Tseng and T. J. Liang, "Novel high-efficiency step-up converter," IEE Proceedings - Electric Power Appl., vol. 151, no. 2, pp. 182-190, 9 March 2004.
    [33] K. Zaoskoufis and E. C. Tatakis, "A thorough analysis for the impact of the coupling coefficient on the behavior of the coupled inductor high step-up converters," IEEE Trans. on Power Electron., vol. 35, no. 8, pp. 8287-8302, Aug. 2020.
    [34] G. A. K. Somiruwan, L. H. P. N. Gunawardena, D. R. Nayanasiri. and Y. Li, "High-step-up boost converter based on coupled inductor, voltage lift and clamp Cells," in Proc. APEC, pp. 2305-2310, 2019.
    [35] Y. T. Chen, Z. X. Lu, and R. H. Liang, "Analysis and design of a novel high-step-up DC/DC converter with coupled inductors," IEEE Trans. on Power Electron., vol. 33, no. 1, pp. 425-436, Jan. 2018.
    [36] A. M. S. S. Andrade, L. Schuch, and M. L. da Silva Martins, "Analysis and design of high-efficiency hybrid high step-up DC–DC converter for distributed PV generation systems," IEEE Trans. on Ind. Electron., vol. 66, no. 5, pp. 3860-3868, May 2019.
    [37] H. Moradi Sizkoohi, J. Milimonfared, M. Taheri, and S. Salehi, "High step-up soft-switched dual-boost coupled-inductor-based converter integrating multipurpose coupled inductors with capacitor-diode stages," IET Power Electron., vol. 8, no. 9, pp. 1786-1797, 9 2015.
    [38] Y. Zhao, W. Li, and X. He, "Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell," IEEE Trans. on Power Electron., vol. 27, no. 6, pp. 2869-2878, June 2012.
    [39] S. Hasanpour, A. Baghramian, and H. Mojallali, "A modified SEPIC-based high step-up DC–DC converter with quasi-resonant operation for renewable energy applications," IEEE Trans. on Ind. Electron., vol. 66, no. 5, pp. 3539-3549, May 2019.
    [40] S. Sathyan, H. M. Suryawanshi, and A. B. Shitole, "Soft switched coupled inductor based high step up converter for distributed energy resources," in Proc. 40th Annual Conference of the IEEE Industrial Electronics Society, pp. 1799-1805, 2014.

    無法下載圖示 校內:2025-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE