簡易檢索 / 詳目顯示

研究生: 陳弘昌
Chen, Hung-chang
論文名稱: 應用於轉導電容濾波器之數位線性可調轉導放大器
A Linearity Improved and Digitally Programmable Operational Transconductance Amplifier for Gm-C Filter
指導教授: 劉濱達
Liu, Bin-da
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 58
中文關鍵詞: 轉導放大器數位可調線性度
外文關鍵詞: operational transconductance amplifiers, digitally programmable, linearity
相關次數: 點閱:44下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,使用0.35 微米二層多晶矽四層金屬之互補式金氧半製程,提出一個兼具有線性度與數位可調之轉導放大器。為了使此轉導放大器能夠兼具數位可調功能與信號線性度要求,在轉導放大器的設計中融合了數位可調式電流鏡與適應性偏壓差動對。數位可調式電流鏡接受數位控制訊號,以改變轉導放大器整體電路之轉導值,而適應性偏壓將改善轉導放大器本體之訊號線性度。本論文為了驗證其線性度與數位可調轉導之功能,將其應用於二階帶通濾波器的設計。
    在電路模擬方面,經由HSPICE輔助設計軟體驗證結果。此兼具有線性度與數位可調之轉導放大器,在取樣頻率50 MHz輸入訊號10 MHz下訊號對雜訊及失真比(Signal to noise and harmonic distortion ratio, SNDR )為61 dB,採用線性數位轉導放大器所建構之二階帶通濾波器,於輸入訊號為9 MHz混合10 MHz,其三階交互調變(third-order intermodulation, IM3)為56 dB。

    In this thesis, a linearity improved and digitally programmable operational transconductance amplifiers (OTA) for Gm-C filter has been designed and implemented in a 0.35-µm 2P4M CMOS process. In order to improve the linearity of OTA, we used an adaptive biasing technique. In addition, the transconductance of OTA can be controlled by our proposed digitally programmable current mirror technique. A second-order bandpass filter was designed to verify the linearity and transconductance of OTA by using our proposed techniques.
    The digitally programmable OTA has been simulated by circuit simulator, HSPICE. While the sampling frequency and input frequency are 50 MHz and 10 MHz respectively, the signal-to-noise and distortion ratio (SNDR) of the digitally programmable OTA is 61 dB. In our bandpass filter, the specification of 56-dB third-order intermodulation (IM3) was also achieved with input frequency mixed 9 MHz and 10 MHz.

    目 錄 i 表目錄 iii 圖目錄 iv 第一章 1 緒論 1 1.1 研究動機 1 1.2 論文組織 2 第二章 轉導放大器之探討 3 2.1 轉導放大器之架構 3 2.1.1電阻 5 2.1.2迴轉器( Gyrators) 7 2.1.3積分器 9 2.2 差動對之非線性問題探討 10 2.2.1差動對之非線性項推導 10 2.2.2放大器線性化之技巧 12 2.2.3源極退化 12 2.2.4交叉耦合 13 2.2.5使用不平衡差動對來補償 15 2.2.6適應性偏壓 17 2.2.7總結 19 2.3 總諧波失真 19 第三章 數位可調轉導放大器 21 3.1 適應性偏壓轉導放大器 22 3.2 數位可調轉導電路 25 3.2.1 自動頻率調整機制之探討 25 3.2.2 數位可程式轉導放大器之設計 27 3.3 模擬結果 31 3.3.1 適應性偏壓轉導放大器之模擬結果 31 3.3.2 數位可調轉導電路之模擬結果 36 第四章 二階可調濾波器之設計 43 4.1 二階濾波器之架構 43 4.2 非線性特性探討 46 4.2.1 1-dB壓縮點 46 4.2.2交互調變 48 4.3 二階可調濾波器之模擬結果 50 第五章 總結與未來工作 56 5.1 總結 56 5.2 未來的工作 57 參考文獻 58

    [1] P. E Allen and D. R Hoolberg, CMOS Analog Circuit Design, New York: Oxford. 2002.
    [2] K. Bult and H. Wallinga, “A class of analog CMOS circuit based on the square-law characteristic of an MOS transistor in saturation,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 430-435, June 1986.
    [3] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, New York: Wiley, 2005.
    [4] G. A. De Veirman, and R. G. Yamasaki, “Design of a bipolar 10MHz programmable continuous-time 0.05° equiripple linear phase filter,” IEEE J. Solid-State Circuits, vol. 27, pp. 324-331, Mar.1992.
    [5] Y. Deng, S. Chakrabartty, and G. Cauwenberghs, “Three-decade programmable fully differential linear OTA,” in Proc. Int. Symp. Circuit and Syst., May 2004, pp. 697-700.
    [6] H. F. A. Hamed, “A low voltage digitally programmable current-mode filter,” in Proc. Int. conf. Microelectronic, Dec. 2003, pp. 297-299.
    [7] A. M. Ismail and A. M. Soliman, “Novel CMOS wide-linear-range transconductor amplifier,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 8, pp. 1248-1253, Aug. 2000.
    [8] D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York: Wiley. 1997.
    [9] J. E. Kardontchik, Introduction to the Design of Transconductor-Capacitor Filter. Germany: Kluwer, 1992.
    [10] K. C. Kuo and A. Leuciuc, “A linear MOS transconductor using source degeneration and adaptive biasing,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 48, no. 10, pp. 937-943, Oct. 2001.
    [11] A. Lewinski, and Jose Silva-Martinez, “OTA linearity enhancement technique for high frequency applications with IM3 below –65 dB,” IEEE Trans. Circuits Syst., vol. 51, pp. 126-204, Oct. 2004.
    [12] J. Silva-Martinez, M. S. J. Stayert, and W. M. C. Sansen, “A large-signal very low-distortion transconductor for high-frequency continuous-time filter,” IEEE J. Solid-State Circuits, vol. 26, pp. 946-955, July 1991.
    [13] J. H. Liao, “A gm-c filter with automatic bandwidth tuning for wireless application,” Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, July, 2005.
    [14] K. Ono, N. Fujii, S. Takagi, and M. Hotta, “Design of low-distortion MOS OTA based on cross-coupled differential amplifier and its application for active filter,” IEICE Trans. Fundament., vol. E77, pp. 363-370, Dec. 1994.
    [15] A. Nedungadi and T. Viswanathan, “Design of linear CMOS transconductance elements,” IEEE Trans. Circuits Syst., vol. 31, no. 10, pp. 891-894, Oct. 1984.
    [16] C. Y. Wing, “A 70MHz CMOS gm-c bandpass filter with automatic tuning,” Master Thesis, Hong Kong University of Science and Technology, Hong Kong, Jan. 1999.
    [17] R. Schaumann, and M. E. Van Valkenburg, Design of Analog Filter. New York: Oxford, 2000.
    [18] S. Sengupta, “Adaptively biased linear transconductor,” IEEE Trans. Circuits Syst., vol. 52, pp. 126-137, Nov. 2005.
    [19] C. Toumazou, Lidgey F.J., and D. Haigh, Analogue IC Design: 1. Integrated Circuit. Design & Construction. London, UK: Peter Peregrinus, 1993.
    [20] Y. Tsividis, Z. Czarnul, and S. C. Fang, “MOS transconductors and integrators with high linearity,” Electron. Lett., vol. 22, no. 5, pp. 245-246, June 1986.
    [21] D. R. Welland, “A digital read/write channel with EEPR4 detection,” IEEE J. Solid-State Circuits, pp. 276-277, Aug. 1994.
    [22] A. Younis, M. Amourah, and R. Geiger, “A high frequency CMOS 4th order digitally programmable bandpass filter,” in Proc. IEEE Midwest Symp. On Circuit and Systems, Aug. 2000, pp. 173-177.

    下載圖示 校內:2009-08-15公開
    校外:2010-08-15公開
    QR CODE