| 研究生: |
謝明學 Hsieh, Min-Hsueh |
|---|---|
| 論文名稱: |
一個具備單點校正技巧的時域溫度感測器 A Time-Domain Temperature Sensor with One-Point Calibration Technique |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 溫度感測器 、單點校正 |
| 外文關鍵詞: | temperature sensor, thermal sensor, one-point calibration |
| 相關次數: | 點閱:102 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文描述一個具備單點校正的改良式時域溫度感測器,其具有兩種操作模式:校正模式與一般模式。為了減少傳統時域溫度感測器插入在參考延遲線中的延遲元件的數目或省去一個需要被調整寬度的脈波輸入,所提出之感測器在攝氏 0°C作單點校正,並將其中溫度相依延遲線的架構改成類似可調整參考延遲線的型態。此外,為進一步提高精確度,本論文提出了一種補償晶片之間製程差異的技巧。
本論文基於TSMC 0.18-μm 1P6M 製程所研製之溫度感測器的解析度優於 0.2°C,晶片面積為 0.463 mm2。透過提出的校正技巧,在三個製程角落以及0°C~ 100°C的溫度範圍下,模擬結果顯示最大誤差為-1.1°C~ 1.2°C。在 2Hz的轉換速率下,晶片的平均電流損耗為 9.68 μA。
This thesis presents a modified time-domain temperature sensor with one-point calibration. There are two operation modes for the presented temperature sensor: calibration mode in which the temperature sensor is calibrated and normal mode in which the temperature sensor performs normal function. In order to reduce number of cells inserted in reference delay line or eliminate an additional input pulse with adjustable width in a conventional time-domain temperature sensor, the one-point calibration is done at 0°C ,and the temperature-dependent delay line (TDDL) of the sensor is modified as the structure similar to adjustable reference delay line (ARDL). In addition, a simple technique is also presented to compensate process variation between chips.
The proposed sensor achieves a resolution better than 0.2°C and a chip area of 0.463 mm2 in a TSMC 0.18-μm 1P6M CMOS process. With proposed calibration, a -1.1°C~ 1.2°C inaccuracy over a 0°C~ 100°C temperature operation range has been simulated for three process corners. The sensor’s average current consumption is 9.68 μA at a conversion rate of 2 samples/s.
[1] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 933–937, Jul. 1996.
[2] G. Wang and G. C. M. Meijer, “The temperature characteristics of bipolar transistors fabricated in CMOS technology,” Sensors and Actuators A: Physical, vol. 87, no. 1–2, pp. 81–89, Dec. 2000.
[3] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” in Proc. of ISCAS, May 2001, pp. 368–371.
[4] M. A. P. Pertijs, A. Niederkorn, X. Ma, B. McKillop, A. Bakker, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σinaccuracy of ±0.5°C from -50°C to 120°C,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 454–461, Feb. 2005.
[5] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2805–2815, Dec. 2005.
[6] J. Robert and P. Deval, “A second-order high-resolution incremental A/D converter with offset and charge injection compensation,” IEEE J. Solid-State Circuits, vol. 23, no. 3, pp. 736–741, Jun. 1988.
[7] M. A. P. Pertijs, A. Bakker, and Johan H. Huijsing, “A second-order sigma-delta ADC using MOS capacitors for smart sensor applications,” Proceedings of IEEE Sensors, Oct. 2004, pp. 421-424
[8] M. A. P. Pertijs and J. H. Huijsing, “Transistor temperature measurement for calibration of integrated temperature sensors,” in Proc. of IMTC, May 2002, pp. 755–758.
[9] M. A. P. Pertijs and J. H. Huijsing, “Bitstream trimming of a smart temperature sensor,” in Proc. of IEEE Sensors, pp. 904–907, Oct. 2004.
[10] M. A. P. Pertijs and J. H. Huijsing, “A sigma-delta modulator with bitstream-controlled dynamic element matching,” in Proc. ESSCIRC, Sep. 2004, pp. 187–190.
[11] A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” in Proc. IEEE ISSCC Dig., Feb. 2009, pp. 342–343.
[12] K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha, and D. Ham, “Dual-DLL-based CMOS all-digital temperature sensor for microprocessor thermal monitoring,” in Prof. of IEEE ISSCC Dig., Feb. 2009, pp. 68–69.
[13] S. Sidiropoulos and M. Horowitz, “A semidigital dual delay-locked loop,” IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1683-1692, Nov. 1997.
[14] P. Chen, C.-C. Chen, W.-F. Lu, and C.-C. Tsai, “A time-to-digital-converter-based CMOS smart temperature sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642–1648, Aug. 2005.
[15] P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng, and C.-Y. Chu, “A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements,” IEEE Trans. Circuits Syst. I, vol. 54, no. 12, pp. 2661–2668, Dec. 2007.
[16] P. Chen, T.-K. Chen, Y.-S. Wang, and C.-C. Chen, “A time-domain sub-micro watt temperature sensor with digital set-point programming,” IEEE Sensors J., vol. 9, pp. 1639–1646, Dec. 2009.
[17] P. Chen, C.-C. Chen, Y.-H. Peng, K.-M. Wang, and Y.-S. Wang, “A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of -0.4°C~+0.6°C over a 0°C to 90°C range,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 600–609, Mar. 2010.
[18] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Trans. Circuits Syst. I, vol. 48, no. 7, pp. 876–884, Jul. 2001.
[19] M. K. Law and A. Bermak, “A 405-nW CMOS temperature sensor based on linear MOS operation,” IEEE Trans. Circuits Syst. II, vol. 56, no. 12, pp. 891–895, Dec. 2009.
[20] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, “A 1.2 V 10 μW NPN-based temperature sensor in 65 nm CMOS with an inaccuracy of ±0.2°C (3σ) from -70°C to 125°C,” in Proc. of IEEE ISSCC Dig., Feb. 2010, pp. 312–313.
[21] G.-K. Dehng, J.-M. Hsu, C.-Y. Yang, and S.-I. Liu, “Clock-deskew buffer using a SAR-controlled delay-locked loop,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1128–1136, Aug. 2000.
[22] P. Ituero, J. L. Ayala, and M. López-Vallejo, “A nanowatt smart temperature sensor for dynamic thermal management,” IEEE Sens. J., vol. 8, no. 12, pp. 2036–2043, Dec. 2008.
[23] S. Zhou and N. Wu, “A novel ultra low power temperature sensor for UHF RFID tag chip,” in Proc. of ASSCC, Nov. 2007, pp. 464–467.
[24] M.-K. Law, A. Bermak, and H.-C. Luong, “A sub-μW embedded CMOS temperature sensor for RFID food monitoring application,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1246–1255, Jun. 2010.
[25] B. Razavi, Design of Analog CMOS Integrated Circuit. New York: McGraw-Hill, 2000.
[26] K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits and Systems. New York: McGraw-Hill, 1994.
[27] A. Bakker and J. H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors. Boston, MA: Kluwer Academic, 2000.
[28] T.-K. Chen, “A Time-Domain Mixed-Mode Temperature Sensor with Digital Set-Point Programming,” National Taiwan University of Science and Technology, master thesis, 2007
[29] K.-R. Tsai, “An Embedded All Digital Multi-Point Temperature Sensor System for SoC Application,” National Yunlin Unversity of Science and Technology, master thesis, 2008
[30] M. Tuthill, “A switched-current, switched-capacitor temperature-sensor in 0.6-μm CMOS,” IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1117–1122, Jul. 1998.
[31] P. Chen, S.-C. Chen, Y.-S. Shen, Y.-J. Peng, “All-digital time-domain smart temperature sensor with an inter-batch inaccuracy of -0.7°C~+0.6°C after one-point calibration,” IEEE Trans. Circuits Syst. I, vol.58, no.5, pp.913-920, May 2011
[32] J. Yin, J. Yi, M. Law, Y. Ling, M. Lee, K. Ng, B. Gao, H. Luong, A. Bermak, M. Chan, W.-H. Ki, C.-Y. Tsui, and M.-F. Yuen, “A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor,” in Proc. of IEEE ISSCC Dig., Feb. 2010, pp. 308–309.