簡易檢索 / 詳目顯示

研究生: 蔡昕峻
Tsai, Hsin-Chun
論文名稱: 基於深度學習與特徵模型之肋骨骨折偵測與人物識別研究與應用
Research and Application of Rib Fracture Detection and Personal Identification Based on Deep Learning and Feature Models
指導教授: 王駿發
Wang, Jhing-Fa
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 101
中文關鍵詞: 深度學習圖形辨識人物識別特徵模型肋骨骨折偵測
外文關鍵詞: Deep Learning , Pattern Recognition, Personal Identification, Feature Model, Rib Fracture Detection
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract iii 致謝 v Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background and Review 2 1.3 Contributions 4 1.4 Organization of Dissertation 6 Chapter 2 Proposed Methods for Algorithm and Architecture 7 2.1 Proposed Methods for Algorithm Level 7 2.1.1 Auxiliary Branch YOLOv5 (AB-YOLOv5) 7 2.1.2 Patch-Based YOLOv5 (PB-YOLOv5) 8 2.1.3 Body Direction Estimation (BDE) 10 2.1.4 Height Measurement (HM) 11 2.1.5 Candidate Analysis (CA) 17 2.1.6 Output Selection Strategy (OSS) 18 2.2 Proposed Methods for Architecture Level 22 2.2.1 Two-Stage Cascade Detector (TSCD) 22 2.2.2 Multiview Face Direction Estimation (MFDE) 23 2.2.3 Long-Range Personal Identification (LRPI) 28 2.2.4 Incremental Learning Model (ILM) 29 2.2.5 Dynamic Personal Identification (DPI) 31 Chapter 3 System Application of Rib Fracture Detection System 32 3.1 Rib Fracture Detection System Based on Deep Learning Model 32 3.1.1 Introduction 32 3.1.2 System Overview 33 3.1.3 Proposed Two-Stage Cascade Detector for Rib Fracture Detection System 39 3.2 Summary 41 Chapter 4 System Application of Personal Identification Systems 42 4.1 Personal Identification System Based on Personal Feature Model 42 4.1.1 Introduction 42 4.1.2 Integrated Classification of Face Direction and Height (ICFDH) 43 4.1.3 Proposed Long-Range Personal Identification (LRPI) System 44 4.1.4 Summary 48 4.2 Personal Identification System Based on Incremental Learning Model 49 4.2.1 Introduction 49 4.2.2 Proposed Incremental Learning Dynamic Personal Identification (DPI) System 52 4.2.3 Summary 59 Chapter 5 Experiment Results 60 5.1 Rib Fracture Detection System 60 5.1.1 Dataset Description 60 5.1.2 Experimental Environment 60 5.1.3 Experimental Results 62 5.2 Long-Range Personal Identification System 67 5.2.1 Experimental Environment 67 5.2.2 Experimental Results 68 5.3 Incremental Learning Dynamic Personal Identification System 70 5.3.1 Experimental Environment 70 5.3.2 Experimental Results 71 Chapter 6 Conclusions 73 Bibliography 75 Publication List 87

    [1] Hsin-Chun Tsai, Nan-Han Lu, Kuo-Ying Liu, Chuan-Han Lin, and Jhing-Fa Wang, “Cascading AB-YOLOv5 and PB-YOLOv5 for rib fracture detection in frontal and oblique chest X-ray images“, IET Computer Vision, 2023.
    [2] Hsin-Chun Tsai, Bo-Wei Chen, Jhing-Fa Wang, and Anand Paul, “Enhanced Long-Range Personal Identification Based on Multimodal Information of Human Features”, Multimedia Tools and Applications, November 2014
    [3] Hsin-Chun Tsai, Bo-Wei Chen, Karunanithi Bharanitharan, Anand Paul, Jhing-Fa Wang, and Hung-Chieh Tai, “User-centric incremental learning model of dynamic personal identification for mobile devices,” Multimedia Systems, pp. 1-10, 2015
    [4] Hsin-Chun Tsai, Yang-Yen Ou, Chuan-Han Lin, Nan-Han Lu, Kuo-Ying Liu, and Jhing-Fa Wang, “Automatic Rib Fracture Detection and Localization from Frontal and Oblique Chest X-Rays”, 2022 10th International Conference on Orange Technology (ICOT), Shanghai, China, 2022
    [5] Hsin-Chun Tsai, Jhing-Fa Wang and Hung-Chieh Tai, "An evolutionary learning model based on FSS and eigenspace approaches for distance-alterable face recognition," TENCON 2011 - 2011 IEEE Region 10 Conference, Bali, Indonesia, 2011
    [6] Hsin-Chun Tsai, Jhing-Fa Wang, and Hung-Chieh Tai. "Body Orientation Estimation Using Template Matching Based on Shape and Skin Color Information." APSIPA ASC 2011 Xi’an
    [7] Hsin-Chun Tsai, Wen-Chi Wang, Jia-Ching Wang and Jhing-Fa Wang, "Long distance person identification using height measurement and face recognition," TENCON 2009 - 2009 IEEE Region 10 Conference, Singapore, 2009
    [8] Hsin-Chun Tsai, Chi-Hung Chuang, Shin-Pang Tseng, Jhing-Fa Wang, "The optical flow-based analysis of human behavior-specific system", 2013 1st International Conference on Orange Technologies (ICOT), 2013
    [9] Hsin-Chun Tsai, Wei-Kang Fan, Bo-Wei Chen, Jhing-Fa Wang, Po-Chuan Lin, "A real-time awareness system for happiness expression based on the multilayer histogram of oriented gradients", 4th International Conference on Awareness Science and Technology(iCAST), Seoul, Korea, 2012
    [10] Y. Gao, H. Liu, L. Jiang, C. Yang, X. Yin, J.-L. Coatrieux, and Y. Chen, “Cce-net: A rib fracture diagnosis network based on contralateral, contextual, and edge enhanced modules,” Biomedical Signal Processing and Control, vol. 75, p. 103620, 2022.
    [11] Q. Kong, Y. Wu, C. Yuan, and Y. Wang, “Ct-cad: Context-aware transformers for end-to-end chest abnormality detection on x-rays,” in 2021 IEEE International Conference on BIBM. pp. 1385–1388.
    [12] J. Liu, J. Lian, and Y. Yu, “Chestx-det10: chest x-ray dataset on detection of thoracic abnormalities,” arXiv preprint arXiv:2006.10550, 2020.
    [13] Simon, J., Cushman, J., Barraco, R., Lane, V., Luchette, F.A. Miglietta, M., D.J. Roccaforte, Spector R., East Practice Management Guidelines Work Group: 'Pain management guidelines for blunt thoracic trauma', J. Trauma, 59, 5, 1256–1267, 2005. DOI: 10.1097/01.ta. 0000178063. 77946.f5
    [14] He, Z., Zhang, D., Xiao, H., Zhu, Q., Xuan, Y., Su, K., Liao, M., Tang, Y., Xu, E.: ‘The ideal methods for the management of rib fractures’, J. Thorac. Dis., 11, Suppl. 8, S1078–S1089, 2019. DOI: 10.21037/jtd.2019.04.109
    [15] Jin, L., Ge, X., Lu, F., Sun, Y., Li, C., Gao, P., Gao, F., Li, M.: ‘Low-dose CT examination for rib fracture evaluation: A pilot study’, Medicine, 97, 30, e11624, 2018. DOI: 10.1097/MD.0000000000011624
    [16] Jocher, G., Stoken, A., Borovec, J., Christopher, S., Changyu, L., et al.: ‘ultralytics/yolov5: v4.0–nn.SiLU () activations, weights & biases logging, PyTorch Hub integration (v4.0)’, Zenodo, 2021. DOI: 10. 5281/zenodo. 4418161
    [17] Liu, J., Lian, J., Yu, Y.: ‘ChestX-Det10: Chest X-ray dataset on detection of thoracic abnormalities’, arXiv preprint arXiv:2006.10550, 2020. DOI:10.48550/arXiv.2006. 10550
    [18] Gao. Y., Liu. H., Jiang. L., Yang. C., Yin. X., Coatrieux, J.–L., Chen. Y.: ‘CCE–Net: A rib fracture diagnosis network based on contralateral, contextual, and edge enhanced modules’, Biomed. Signal Process. Control, 75, 103620, 2022. DOI: 10.1016/j.bspc.2022.103620
    [19] Ai. X., Cao. M., Li. X.: ‘A pseudo lesion generation method for deep learning based chest X-ray lung disease detection’, 2021 IEEE 2nd Int. Conf. Big Data, Artif. Intell. Internet Things Eng. (ICBAIE), Nanchang, China, 256–259, IEEE, March 2021. DOI: 10.1109/ICBAIE52039. 2021.9389924
    [20] Ren, S., He, K., Girshick, R., Sun, J.: ‘Faster R–CNN: Towards real–time object detection with region proposal networks’, Adv. Neural Inf. Process. Syst., 28, 2015.
    [21] Lian, J., Liu, J., Zhang, S., Gao, K., Liu, X., Zhang, D., Yu, Y.: ‘A structure–aware relation network for thoracic diseases detection and segmentation’, IEEE Trans. Med. Imag., 40, 8, 2042–2052, 2021. DOI: 10.1109/TMI.2021. 3070847
    [22] Huang, Y.–J., Liu, W., Wang, X., Fang, Q., Wang, R., Wang, Y., Chen, H., Chen, H., Meng, D., Wang, L.: ‘Rectifying supporting regions with mixed and active supervision for rib fracture recognition’, IEEE Trans. Med. Imag., 39, 12, 3843–3854, 2020. DOI: 10.1109/TMI.2020. 3006138
    [23] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: ‘Learning deep features for discriminative localization’, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas, Nevada, 2921–2929, June 2016.
    [24] National Institutes of Health: ‘NIH Clinical Center provides one of the largest publicly available chest x–ray datasets to scientific community’, 2022.
    [25] Nguyen, H.Q., Lam, K., Le, L.T., Pham, H.H., Tran, D.Q., Nguyen, D.B., Le, D.D., Pham, C.M., Tong, H.T., Dinh, D.H., et al.: ‘VinDr–CXR: An open dataset of chest X–rays with radiologist’s annotations’, arXiv preprint arXiv:2012.15029, 2020.
    [26] J. Irvin, Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpanskaya, K., et al.: ‘CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison’, Proc. AAAI Conf. Artif. Intell., 33, 590–597, 2019. DOI: 10.1609 /aaai.v33i01.3301590
    [27] Wang, X., Kondratyuk, D., Christiansen, E., Kitani, K.M., Alon, Y., Eban, E.: ‘Wisdom of committees: An overlooked approach to faster and more accurate models’, 10th Int. Conf. Learn. Represent., 2020.
    [28] Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: ‘mixup: Beyond empirical risk minimization’, arXiv preprint arXiv:1710.09412, 2017. DOI: 10.48550/arXiv. 1710.09412
    [29] Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: ‘YOLOv4: Optimal speed and accuracy of object detection’, arXiv preprint arXiv:2004.10934, 2020. DOI: 10.48550/ arXiv.2004.10934
    [30] Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: ‘Cutmix: Regularization strategy to train strong classifiers with localizable features’, Proc. IEEE/CVF Int. Conf. Comput. Vis., 6023–6032, 2019. DOI: 10.1109/ICCV. 2019.00612
    [31] Albahli, S., Nida, N., Irtaza, A., Yousaf, M.H., Mahmood, M.T.: ‘Melanoma lesion detection and segmentation using YOLOv4–DarkNet and active contour’, IEEE Access, 8, 198403–198414, 2020. DOI: 10.1109/ ACCESS.2020.3035345
    [32] Fan, W., Guo, X., Teng, L., Wu, Y.: ‘Research on abnormal target detection method in chest radiograph based on YOLO v5 algorithm’, 2021 IEEE Int. Conf. Comput. Sci. Electronic Inf. Eng. Intell. Control Technol. (CEI), Fuzhou, China, 125–128, IEEE, September 2021. DOI: 10.1109/ CEI52496.2021.9574450
    [33] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dolla'r, P., Zitnick, C.L.: ‘Microsoft coco: Common objects in context’, Computer Vision–ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, 8693, eds. D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars, 740–755, Springer, Cham, 2014. DOI: 10. 1007/978-3-319-10602-1_48
    [34] Chen, M.-Y. Liu, O. Tuzel, and J. Xiao, ‘R–CNN for small object detection‘, Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science, 10115, eds. S. H. Lai, V. Lepetit, K. Nishino, and Y. Sato, 214–230, Springer, Cham, 2016. DOI: 10.1007/978-3-319-54193-8_14
    [35] Nguyen, N.-D., Do, T., Ngo, T.D., Le, D.-D.: ‘An evaluation of deep learning methods for small object detection’, J. Electric. Comput. Eng., 2020, 3189691, 2020. DOI: 10.1155/2020/3189691
    [36] Akyon, F.C., Altinuc, S.O., Temizel, A.: ‘Slicing aided hyper inference and fine-tuning for small object detection’, 2022 Int. Conf. Image Process., Bordeaux, France, 966–970, 2022. DOI: 10.1109/ICIP46576.2022. 9897990
    [37] Van Etten, A.: ‘Satellite imagery multiscale rapid detection with windowed networks’, 2019 IEEE Winter Conf. Appl. Comput. Vis. (WACV), Waikoloa, HI, USA, 735–743, IEEE, 2019. DOI: 10.1109/WACV.2019.00083
    [38] Opitz D., Maclin, R.: ‘Popular ensemble methods: An empirical study’, J. Artif. Intell. Res., 11, 169–198, 1999. DOI: 10.1613/jair.614
    [39] R. Polikar, ‘Ensemble based systems in decision making’, IEEE Circuit. Syst. Magaz., 6, 3, 21–45, 2006. DOI: 10.1109/MCAS.2006.1688199
    [40] Heitz, G., Gould, S., Saxena, A., Koller, D.: ‘Cascaded classification models: Combining models for holistic scene understanding’, Adv. Neural Inf. Process. Syst., 21, 2008.
    [41] Hosang, J., Benenson, R., Schiele, B.: ‘Learning non-maximum suppression’, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, 4507–4515, July 2017. DOI: 10.1109/CVPR.2017.685
    [42] Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: ‘Distance-IoU loss: Faster and better learning for bounding box regression’, Proc. AAAI Conf. Artif. Intell., 34, 12993–13000, 2020. DOI: 10.1609/aaai.v34i07.6999
    [43] Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: ‘UnitBox: An advanced object detection network’, Proc. 24th ACM Int. Conf. Multimed., 516–520, 2016. DOI: 10.1145/2964284.2967274
    [44] Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: ‘The PASCAL visual object classes (VOC) challenge’, Int. J. Comput. Vis., 88, 2, 303–338, 2010. DOI: 10.1007/s11263-009-0275-4
    [45] Loshchilov, I., Hutter, F.: ‘SGDR: Stochastic gradient descent with warm restarts’, arXiv preprint arXiv: 1608.03983, 2016. DOI: 10.48550/arXiv.1608.03983
    [46] Q. H. Xiao (2007) Biometrics - technology, application, challenge, and computational intelligence solutions. IEEE Computational Intelligence Magazine, 2(2), p. 5
    [47] M. Turk and A. Pentland (1991) Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), pp. 71-86
    [48] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman (1997) Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), pp. 711-720
    [49] D. L. Swets and J. J. Weng (1996) Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), pp. 831-836
    [50] H.-C. Tsai, W.-C. Wang, J.-C. Wang, and J.-F. Wang (2009) Long distance person identification using height measurement and face recognition. 2009 IEEE Region 10 Conference, TENCON 2009, November 23, 2009 - November 26, 2009, Singapore, Singapore, Institute of Electrical and Electronics Engineers Inc., pp. 1-4
    [51] R. P. Wildes (1997) Iris recognition: An emerging biometric technology. Proceedings of the IEEE, 85(9), pp. 1348-1363
    [52] R. S. Choras (2010) Multimodal biometric personal authentication integrating iris and retina images. Advances in Intelligent and Soft Computing, 84, pp. 121-131
    [53] Y. Varetskyy, B. Rusyn, A. Molga, and A. Ignatovych (2010) A new method of fingerprint key protection of grid credential. Advances in Intelligent and Soft Computing, 84, pp. 99-103
    [54] A. K. Hrechak and J. A. McHugh (1990) Automated fingerprint recognition using structural matching. Pattern Recognition, 23(8), pp. 893-904
    [55] B. Moayer and K. S. Fu (1986) A tree system approach for fingerprint pattern-recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(3), pp. 376-387
    [56] A. K. Jain, S. C. Dass, and K. Nandakumar (2004) Can soft biometric traits assist user recognition? Biometric Technology for Human Identification, April 12, 2004 - April 13, 2004, Orlando, FL, United states, SPIE, pp. 561-572
    [57] T. W. Kuan, H. C. Tsai, J. F. Wang, J. C. Wang, B. W. Chen, and Z. Y. Lin (2012) A new hybrid and dynamic fusion of multiple experts for intelligent porch system. Expert Systems with Applications, 39(10), pp. 9288-9296
    [58] Y. H. Choi, Y. S. Tak, S. Rho, and E. Hwang (2013) Skin feature extraction and processing model for statistical skin age estimation. Multimedia Tools and Applications, 64(2), pp. 227-247
    [59] M. Kawulok (2010) Energy-based blob analysis for improving precision of skin segmentation. Multimedia Tools and Applications, 49(3), pp. 463-481
    [60] R. Zewail, A. Elsafi, M. Saeb, and N. Hamdy (2004) Soft and hard biometrics fusion for improved identity verification. The 2004 47th Midwest Symposium on Circuits and Systems - Conference Proceedings, July 25, 2004 - July 28, 2004, Hiroshima, Japan, Institute of Electrical and Electronics Engineers Inc., pp. I225-I228
    [61] W. Feng, L. Xie, J. Zeng, and Z. Q. Liu (2009) Audio-visual human recognition using semi-supervised spectral learning and hidden Markov models. Journal of Visual Languages and Computing, 20(3), pp. 188-195
    [62] C. BenAbdelkader, R. Cutler, and L. Davis (2002) Person identification using automatic height and stride estimation. 4, Institute of Electrical and Electronics Engineers Inc., pp. 377-380
    [63] A. Dantcheva, C. Velardo, A. D'Angelo, and J. L. Dugelay (2011) Bag of soft biometrics for person identification. Multimedia Tools and Applications, 51(2), pp. 739-777
    [64] A. M. Martinez and A. C. Kak (2001) PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), pp. 228-233
    [65] C. Liu and H. Wechsler (2002) Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, 11(4), pp. 467-476
    [66] P. Viola and M. J. Jones (2004) Robust real-time face detection. International Journal of Computer Vision, 57(2), pp. 137-154
    [67] P. Viola and M. Jones (2001) Rapid object detection using a boosted cascade of simple features. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 8, 2001 - December 14, 2001, Kauai, HI, United states, Institute of Electrical and Electronics Engineers Computer Society, pp. I511-I518
    [68] M. Berger:(1987) Geometry II. p. 406; Springer Berlin Heidelberg
    [69] A. Criminisi, I. Reid, and A. Zisserman (2000) Single view metrology. International Journal of Computer Vision, 40(2), pp. 123-148
    [70] A. Criminisi:(2001) Accurate visual metrology from single and multiply uncalibrated images. p. 197; Springer-Verlag London Ltd
    [71] A. Criminisi (2002) Single-view metrology: Algorithms and applications. DAGM-Symposium on Pattern Recognition, September 2002
    [72] Y. Liao and V. R. Vemuri (2002) Use of K-nearest neighbor classifier for intrusion detection. Computers & Security, 21(5), pp. 439-448
    [73] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720 (1997)
    [74] M. Turk, “A random walk through eigenspace,” IEICE Transactions on Information and Systems, vol. E84d, no. 12, pp. 1586-1595 (2001)
    [75] M. Turk, and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86 (1991)
    [76] J. Y. Wu, G. Y. An, and Q. Q. Ruan, “Independent gabor analysis of discriminant features fusion for face recognition,” IEEE Signal Processing Letters, vol. 16, no. 1-3, pp. 97-100 (2009)
    [77] R. Chellappa, C. L. Wilson, and S. Sirohey, “Human and machine recognition of faces: A survey,” Proceedings of the IEEE, vol. 83, no. 5, pp. 705-741 (1995)
    [78] D. R. Valenzano, A. Mennucci, G. Tartarelli et al., “Shape analysis of female facial attractiveness,” Vision Research, vol. 46, no. 8-9, pp. 1282-1291 (2006)
    [79] Lina, T. Takahashi, I. Ide et al., “Incremental unsupervised-learning of appearance manifold with view-dependent covariance matrix for face recognition from video sequences,” IEICE Transactions on Information and Systems, vol. E92D, no. 4, pp. 642-652 (2009)
    [80] S. Lina, T. Takahashi, I. Ide et al., “Construction of appearance manifold with embedded view-dependent covariance matrix for 3d object recognition,” IEICE Transactions on Information and Systems, vol. E91D, no. 4, pp. 1091-1100 (2008)
    [81] E. Borenstein, and S. Ullman, “Combined top-down/bottom-up segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 12, pp. 2109-2125 (2008)
    [82] X. Chen, Q. Yang, H. Liao et al., "Real-time face pose estimation in video sequence," 2nd International Workshop on Education Technology and Computer Science, ETCS 2010. pp. 24-27, (2010)
    [83] Y. H. Choi, Y. S. Tak, S. Rho et al., “Skin feature extraction and processing model for statistical skin age estimation,” Multimedia Tools and Applications, vol. 64, no. 2, pp. 227-247 (2013)
    [84] T. Kidera, S. Ozawa, and S. Abe, "An incremental learning algorithm of ensemble classifier systems," IEEE International Conference on Neural Networks - Conference Proceedings. pp. 3421-3427, (2006)
    [85] S. Ozawa, S. L. Toh, S. Abe et al., “Incremental learning of feature space and classifier for face recognition,” Neural Networks, vol. 18, no. 5–6, pp. 575-584 (2005)
    [86] A. M. Martinez, and A. C. Kak, “PCA versus LDA,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228-233 (2001)
    [87] D. L. Swets, and J. J. Weng, “Using discriminant eigenfeatures for image retrieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 831-836 (1996)
    [88] M. Kirby, and L. Sirovich, “Application of the karhunen-loeve procedure for the characterization of human faces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103-108 (1990)
    [89] B. Moghaddam, and A. Pentland, “Probabilistic visual learning for object representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 696-710 (1997)
    [90] D. H. Jeong, C. Ziemkiewicz, B. Fisher et al., “IPCA: An interactive system for PAC-based visual analytics,” Computer Graphics Forum, vol. 28, no. 3, pp. 767-774 (2009)
    [91] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,” Future Generation Computer Systems-the International Journal of Grid Computing and Escience, vol. 29, no. 1, pp. 84-106 (2013)
    [92] M. J. Paul Viola, “Robust real-time object detection,” 2nd International Workshop on Statistical and Computational Theories of Vision – Modeling, Learning, Computing, and Sampling (2001)
    [93] A. Paul, Y. C. Jiang, J. F. Wang et al., “Parallel reconfigurable computing-based mapping algorithm for motion estimation in advanced video coding,” ACM Transactions on Embedded Computing Systems, vol. 11 (2012)
    [94] A. Paul, J. Wu, J. F. Yang et al., “Gradient-based edge detection for motion estimation in h.264/avc,” IET Image Processing, vol. 5, no. 4, pp. 323-327 (2011)
    [95] A. C. Tsai, A. Paul, J. C. Wang et al., “Intensity gradient technique for efficient intra-prediction in h.264/avc,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 5, pp. 694-698 (2008)
    [96] Z. Zivkovic, "Improved adaptive gaussian mixture model for background subtraction," Proceedings - International Conference on Pattern Recognition. pp. 28-31, (2004)
    [97] Z. Zivkovic, and F. van der Heijden, “Efficient adaptive density estimation per image pixel for the task of background subtraction,” Pattern Recognition Letters, vol. 27, no. 7, pp. 773-780 (2006)
    [98] K. Kim, T. H. Chalidabhongse, D. Harwood et al., “Real-time foreground-background segmentation using codebook model,” Real-Time Imaging, vol. 11, no. 3, pp. 172-185 (2005)
    [99] C. Garcia, and G. Tziritas, “Face detection using quantized skin color regions merging and wavelet packet analysis,” IEEE Transactions on Multimedia, vol. 1, no. 3, pp. 264-277 (1999)
    [100] K. N. P. Rastislav Lukac Color image processing methods and applications: CRC Press; 1 edition (October 20, 2006) (2006)
    [101] L. Qiong, and P. Guang-zheng, "A robust skin color based face detection algorithm." pp. 525-528, (2010)
    [102] T. Cover, and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27 (1967)
    [103] Pin Wu, Jun-Wei Hsieh, Jin-Cheng Cheng, Shyi-Chyi Cheng, and Shau-Yin Tseng, “ Human Smoking Event Detection Using Visual Interaction Clues,” ICPR, pp. 4344–4347, 2010.
    [104] Wen-Chuan Wu and Chun-Yang Chen, “Detection System of Smoking Behavior Based on Face Analysis,” International Conference on Genetic and Evolutionary Computing, pp.184-187, 2011.
    [105] Toni Jakovčević, Maja Braović, Darko Stipaničev, and Damir Krstinić, “Review of wildfire smoke detection techniques based on visible spectrum video analysis,” Proc. 7th Int. Symp. Image Signal Processing Anal., pp. 480–484, Dubrovnik, 2011.
    [106] T. H. Chen, Y. H. Yin, S. F. Huang, and Y. T. Ye, “The Smoke Detection for Early Fire-Alarming System Base on Video Processing,” Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP, pp. 427-430, 2006.
    [107] A. K. Jain, Fundamentals of digital image processing, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.
    [108] D. Krstinić, D. Stipaničev, and T. Jakovčević, “Histogram-Based Smoke Segmentation in Forest Fire Detection System,” Information Technology and Control, Kaunas, Technologija, Vol. 38, No. 3, pp. 237-244, 2009.
    [109] B. U. Treyin, Y. Dedeoglu, and A. E. Cetin, “Wavelet Based Real-Time Smoke Detection in Video,” EUSIPCO ’05, 2005.
    [110] B. U. Treyin, Y. Dedeoglu, and A. E. Cetin, “Contour Based Smoke Detection in Video Using Wavelets,” European Signal Processing Conference, 2006.
    [111] Paul Viola and Michael Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, pp. 905-910, 2001.
    [112] K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An Adaptive Color-Based Particle Filter,” Image and Vision Computing, Vol. 21, Issue 1, pp. 99-110, Jan 2003.
    [113] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” Proc. DARPA Image Understanding Workshop, pp. 121–130, 1981.
    [114] C. Chiang, W. Tai, M. Yang, Y. Huang, and C. Huang, “A novel method for detecting lips, eyes and faces in real time,” Real-Time Imag., vol. 9, pp. 277–287, Aug. 2003.
    [115] C.-H. Chuang, J.-W. Hiseh, L.-W. Tsai, S.-Y. Chen, and K.-C. Fan, “Carried object detection using ratio histogram and its application to suspicious event analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 6, pp. 911–916, 2009.
    [116] G. Lei, X. H. Li, J. L. Zhou, and X. G. Gong, “Geometric Feature Based Facial Expression Recognition Using Multiclass Support Vector Machines,” IEEE Int. Conf. Granular Computing, pp. 318-321, 2009.
    [117] Y. Wu, H. Liu, and H. Zha, “Modeling Facial Expression Space for Recognition,” IEEE Int. Conf. Intelligent Robots and Systems, pp. 1968-1973, 2005.
    [118] M. Rosenblum, Y. Yacoob, and L. S. Davis, “Human Expression Recognition from Motion Using a Radial Basis Function Network Architecture,” IEEE Trans. Neural Networks, vol. 7, no. 12, pp. 1121-1138, 1996.
    [119] I. Cohen, N. Sebe, A. Garg, L. S. Chen, and T. S. Huang, “Facial Expression Recognition From Video Sequences Temporal and Static Modeling,” Computer Vision and Image Understanding, pp. 160-187, 2003.
    [120] M. Z. Uddin, J. J. Lee, and T. S. Kim, “An Enhanced Independent Component-Based Human Facial Expression Recognition from Video,” IEEE Trans. Consumer Electronics, vol. 55, no. 4, pp. 1121-1138, Nov. 2009.
    [121] Y. J. Li, S. K. Kang, Y. U. Kim, and S. T. Jung, “Development of a Facial Expression Recognition System for the Laughter Therapy,” IEEE Int. Conf. Cybernetics and Intelligent Systems, pp. 168-171, 2010.
    [122] P. Li, S. L. Phung, A. Bouzerdoum, and F. H. C. Tivive, “Automatic Recognition of Smiling and Neutral Facial Expressions,” IEEE Int. Conf. Digital Image Computing: Techniques and Applications, pp. 581-586, 2010.
    [123] M. J. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding Facial Expressions with Gabor Wavelets,” IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 200-205, 1998.
    [124] X. B. Bai, J. O, Q. X. Wu, and Y. Z. Chen, “An Application Study on Facial Expression Recognition based on Gabor Wavelets,” Int. Symp. Computer Network and Multimedia Technology, pp. 1-4, 2009.
    [125] Z. L. Ying, and X. Y. Fang, “Combining LBP and Adaboost for Facial Expression Recognition,” IEEE Int. Conf. Signal Processing, pp. 1461-1464, 2008.
    [126] G. Zhao and M. Pietikainen, “Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions,” IEEE Trans. Pattern Analysis And Machine Intelligence, vol. 29, no. 6, pp. 915-928, June 2007.
    [127] J. Chen and Y. Bai, “Classification Of Smile Expression Using Hybrid PHOG and Gabor Features,” IEEE Int. Conf. Computer Application and System Modeling, pp. 417-420, 2010.
    [128] J. Whitehill, G. Littlewort, I. Fasel, M. Bartlett, and J. Movellan, “Toward Practical Smile Detection,” IEEE Trans. Pattern Analysis And Machine Intelligence, vol. 31, no. 11, pp. 2106-2111, Nov. 2009.
    [129] Y. Bai, L. Guo, L. Jin, and Q. Huang, “A Novel Feature Extraction Method Using Pyramid Histogram Of Orientation Gradients For Smile Recognition,” IEEE Int. Conf. Image Processing, pp. 3305-3308, 2009.
    [130] T. F. Cotes, G. J. Edwards, C. J. Taylor, “Active appearance models”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-685, June. 2001.
    [131] A. J. Calder, A. M. Burton, P. Miller, A. W. Young, and S. Akamatsu, “A Principal Component Analysis Of Facial Expressions,” Vision Research, vol. 41, no. 9, pp. 1179-1208, Apr. 2001.
    [132] A. J. Calder, R. Duncan, A. W. Young, I. Nimmo-Smith, J. Keane, and D.I. Perrett, “Caricaturing Facial Expressions,” Cognition, vol. 76, no. 2, pp. 105-146, Aug. 2000.
    [133] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” IEEE Int. Conf. Computer Vision and Pattern Recognition, pp. 886-893, 2005
    [134] A. Bosch, A. Zisserman, and X. Munoz, “Representing Shape With A Spatial Pyramid Kernel,” ACM Int. Conf. Image and Video Retrieval, pp. 401-408, 2007.
    [135] J. Hirata, M. Morimoto, and K. Fujii, “Estimating Face Direction from Low Resolution Images,” World Automation Congress, 2008.
    [136] X. B. Cao, H. Qiao, and J. Keane, “A Low-Cost Pedestrian-Detection System with a Single Optical Camera,” IEEE Transactions on Intelligent Transportation Systems, vol. 9. No. 1, March 2008, pp.58-67.
    [137] E. Borenstein, E. Sharon and S. Ullman, “Combining Top-down and Bottom-up Segmentation,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop, 2004.
    [138] J. Okubo, B. Sugandi, H. Kim, J. K. Tan, and S. Ishikawa “Face Direction Estimation Based on Eigenspace Technique,” International Conference on Control, Automation and Systems, Korea, 2008.
    [139] X. P. Chen, Q. Q. Yang, H. H. Liao, W. P. Sun, and S. S. Yu, “Real-Time Face Pose Estimation in Video Sequence,” 2nd International Workshop on Education Technology and Computer Science, 2010.
    [140] M. W. Lee, and R. Nevatia, “Body Part Detection for Human Pose Estimation and Tracking,” IEEE Workshop on Motion and Video Computing, 2007.
    [141] A. Genco, and E. Varrica, “Human Figure Recognition and the Estimation of its Direction,” 7th International Workshop on Computer Architecture for Machine Perception, 2005.
    [142] “OpenCV,” Software available at http://sourceforge.net/projects /opencvlibrary/
    [143] K. Ohba, Y. Sato, and K. Ikeuchi, “Appearance-based Visual Learning and Object Recognition with Illumination Invariance,” Machine Vision and Applications, 2000, pp. 189-196.
    [144] C. Garcia, and G. Tziritas, “Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis,” IEEE Transactions on Multimedia, Vol. 1, No. 3. September 1999.
    [145] R. Lukac, and K. N. Plataniotis, “Color Image Processing Methods and Applications,” 2007, pp. 294-307.
    [146] S. K. Singh, D. S. Chauhan, M. Vatsa, and R. Singh, “A Robust Skin Color Based Face Detection Algorithm,” Tamkang Journal of Science and Engineering, Vol. 6, No. 4, 2003, pp. 227-234.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE