簡易檢索 / 詳目顯示

研究生: 徐良杰
Shu, Liang-jye
論文名稱: 採用疊接技術高昇壓型轉換器之研製
Implementation of a High Step-Up Boost Converter with Cascode Technique
指導教授: 梁從主
Liamg, Tsorng-juu
林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 100
中文關鍵詞: 單開關疊接技術高昇壓比
外文關鍵詞: high voltage gain, single switch, Cascode technique
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出ㄧ採用疊接技術之高昇壓型轉換器,電路採用傳統昇降壓型轉換器疊接而成,藉此架構可使切換開關於適當之責任週期下得到高昇壓轉換比。而本轉換器之單開關疊接昇壓技術,亦有架構簡易等優點,可延伸至其他昇壓型轉換器作應用整合,以獲得更高電壓增益。文中針對所提出之高昇壓型轉換器電路架構,探討其動作原理及分析電路特性。最後,研製一輸入電壓為24 V,輸出電壓200 V,輸出功率100 W之疊接式昇降壓型轉換器雛型電路,以實驗與模擬結果驗證本論文理論分析之可行性。

    In this thesis, a novel high step-up cascode boost converter is proposed. The circuits topology of the proposed converter is composed of two conventional buck-boost converters with cascode connect such that a high step-up voltage gain with a proper duty ratio can be obtained. Besides, the cascode concept also can be adopted to construct other step-up converters. The operating principle, steady-state analysis, and efficiency analysis are presented. Finally, an experimental prototype with 24 V input and 200 V/ 100 W output is implemented to demonstrate the theoretical analysis.

    中文摘要............................................................................................. I 英文摘要............................................................................................. II 誌謝..................................................................................................... III 目錄..................................................................................................... IV 圖目錄................................................................................................. VII 表目錄................................................................................................. XI 符號表................................................................................................. XII 第一章 緒論..................................................................................... 1 1.1 研究動機與背景................................................................... 1 1.2 研究目的............................................................................... 2 1.3 論文架構簡介....................................................................... 3 第二章 高昇壓型轉換器之電路架構簡介..................................... 4 2.1 串級式昇壓型轉換器........................................................... 5 2.2 雙倍壓昇壓型轉換器........................................................... 7 2.3 切換電容式昇壓型轉換器................................................... 9 2.4 耦合電感昇壓型轉換器....................................................... 10 2.5 昇壓返馳型轉換器............................................................... 13 2.6 疊接昇壓返馳-順向型轉換器.............................................. 16 2.7 討論及比較........................................................................... 18 第三章 採用疊接技術高昇壓型轉換器之研製............................. 23 3.1 主電路架構............................................................................ 23 3.2 穩態電路動作模式分析........................................................ 25 3.2.1 連續導通模式................................................................ 26 3.2.2 非連續導通模式............................................................ 32 3.2.2.1 電感L1:CCM、電感L2:DCM之情況................... 32 3.2.2.2 電感L1:DCM、電感L2:CCM之情況................... 40 3.2.2.3 電感L1:DCM、電感L2:DCM之情況................... 45 3.3 採用疊接技術高昇壓型轉換器之增益比較........................ 49 3.4 採用疊接技術高昇壓型轉換器之效率分析........................ 50 3.5 採用疊接技術高昇壓型轉換器之電路延伸........................ 55 3.6 疊接式昇壓型轉換器之電路延伸........................................ 56 3.6.1 疊接昇壓型轉換器應用I.............................................. 57 3.6.2 疊接昇壓型轉換器應用II............................................. 58 第四章 硬體電路製作與實驗結果分析................................. 60 4.1 電路元件設計........................................................................ 61 4.1.1 功率開關S之設計.......................................................... 61 4.1.2 濾波電容Co1、Co2之設計............................................ 62 4.1.3 儲能電感L1、L2之設計............................................... 63 4.1.4 被動開關D1、Do1、Do2之設計..................................... 64 4.1.4.1 整流二極體D1之設計............................................ 65 4.1.4.2 輸出二極體Do1、Do2之設計................................. 65 4.2 脈波寬度調變暨隔離控制電路............................................ 67 4.3 回授電路及補償器之設計.................................................... 70 4.3.1 具電壓模式控制之開迴路分析.................................... 71 4.3.2 補償器設計.................................................................... 73 4.3.3 具電壓模式控制之閉迴路分析.................................... 75 4.4 電路模擬與實際波形量測.................................................... 77 4.5 效率數據結果分析................................................................ 89 第五章 結論與未來展望................................................................. 90 5.1 結論........................................................................................ 90 5.2 未來展望................................................................................ 91 參考文獻............................................................................................ 92 附錄A................................................................................................. 96

    [1] E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali, and A. A. Fardoun, “A family of single-switch PWM converters with high step-up conversion ratio,” IEEE Trans. on Circuits and Systems-I, vol. 55, no. 4, pp. 1159-1171, May. 2008.
    [2] I. Barbi and R. Gules, “Isolated DC-DC converters with high-output voltage for TWTA telecommunication satellite applications,” IEEE Trans. on Power Electronics, vol. 18, no. 4, pp. 975-984, Jul. 2003.
    [3] R. J. Wai and R. Y. Duan, “High-efficiency DC/DC converter with high voltage gain,” IEE Proc. on Electric Power Applications, vol. 152, no. 4, Jul. 2005.
    [4] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled inductors and buck-boost type of active clamp,” IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 154-162, Jan. 2008.
    [5] S. J. Jang, T. W. Lee, K. S. Kang, S. S. Kim, and C. Y. Won, “A new active clamp sepic-flyback converter for a fuel cell generation system,” in Proc. IEEE IECON, Nov. 2005, pp. 2538-2542.
    [6] R. J. Wai and C. Y. Lin, “High-efficiency, high-step-up DC-DC convertor for fuel-cell generation system,” IEE Proc. on Electric Power Applications, vol. 152, no. 5, Sep. 2005.
    [7] E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “High conversion ratio DC-DC converters with reduced switch stress,” IEEE Trans. on Circuits and Systems-I, vol. 55, no. 7, pp. 2139-2151, Aug. 2008.
    [8] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. on Power Electronics, vol. 20, no. 5, pp. 1025-1035, Sep. 2005.
    [9] Q. Zhao, F. Tao, F. C. Lee, P. Xu, and J. Wei, “A simple and effective method to alleviate the rectifier reverse-recovery problem in continuous-current-mode boost converters,” IEEE Trans. on Power Electronics, vol. 16, no. 5, pp. 649-658, Sep. 2001.
    [10] K. W. Ma and Y. S. Lee, “An integrated flyback converter for DC uninterruptible power supply,” IEEE Trans. on Power Electronics, vol. 11, no. 2, pp. 318-327, Mar. 1996.
    [11] D. K. W. Cheng, X. C. Liu, and Y. S. Lee, “A new improved boost converter with ripple free input current using coupled inductors,” in Proc. IEE PEVSD, Sep. 1998, pp. 592-599.
    [12] J. Wang, W. G. Dunford, and K. Mauch, “Modified boost converter with continuous inductor current mode and ripple free input current,” in Proc. IEEE PESC, Jun. 1996, vol. 1, pp. 390-396.
    [13] R. Watson, F. C. Lee, and G. C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in flyback converters,” IEEE Trans. on Power Electronics, vol. 11, no. 1, pp. 162-169, Jan. 1996.
    [14] C. T. Choi, C. K. Li, and S. K. Kok, “Modeling of an active clamp discontinuous conduction mode flyback converter under variation of operating condition,” in Proc. IEEE PEDS, Jul. 1999, vol. 2, pp. 730-733.
    [15] E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “High conversion ratio DC-DC converters with reduced switch stress,” IEEE Trans. on Circuits and Systems-I, vol. 55, no. 7, pp. 2139-2151, Aug. 2008.
    [16] T. F. Wu, T. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled inductors and buck-boost type of active clamp,” IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 154-162, Jan. 2008.
    [17] 吳志鋐,陳建富,鄭銘揚,「交錯式二次側磁重置順向轉換器之研製」,國立成功大學電機工程研究所碩士論文,中華民國97年6月。
    [18] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, Third Edition, John Wiley & Sons, Inc., 2003.
    [19] L. H. Dixon, Control Loop Cookbook, Unitrode Power Supply Design Seminar, SEM-1200, pp. C4.1-C4.26, 1997.
    [20] L. Huber and M. M. Jovanovic, “A design approach for server power supplies for networking,” in Proc. IEEE APEC, Feb. 2000, vol. 2, pp. 1163-1169.
    [21] J. A. Morales-Saldana, R. Galarza-Quirino, J. Leyva-Ramos, E. E. Carbajal-Gutierrez, and M. G. Ortiz-Lopez, “Multiloop controller design for a quadratic boost converter,” IEE Proc. on Electric Power Applications, vol. 1, no. 3, pp. 362-367, May. 2007.
    [22] M. G. Ortiz-Lopez, J. Leyva-Ramos, L. H. Diaz-Saldierna, J. M. Garcia-Ibarra, and E. E. Carbajal-Gutierrez, “Current-Mode Control for a Quadratic Boost Converter with a Single Switch,” in Proc. IEEE PESC, Jun. 2007, pp. 2652-2657.
    [23] F. L. Luo and H. Ye, “Positive output cascade boost converters,” IEE Proc. on Electric Power Applications, vol. 151, no. 5, pp. 590-606, Sep. 2004.
    [24] H. Nomura, K. Fujiwara, and M. Yoshida, “A new DC-DC converter circuit with larger step-up/down ratio,” in Proc. IEEE PESC, Jun. 2006, pp. 1-7.
    [25] Q. Zhao, F. Tao, and F. C. Lee, “A front-end DC/DC converter for network server applications,” in Proc. IEEE PESC, Jun. 2001, vol. 3, pp. 1535-1539.
    [26] K. Harada and H. Sakamoto, “Switched snubber for high frequency switching,” in Proc. IEEE PESC, Jun. 1990, pp. 181-188.
    [27] Q. Zhao, Y. Hu, F. C. Lee, J. A. Sabate, and F. Li, “A high efficiency DC/DC converter as the front-end stage of high intensity discharge lamp ballasts for automobiles,” in Proc. IEEE. IPEMC, Aug. 2000, vol. 2, pp. 752-756.
    [28] Q. Zhao, F. Tao, Y. Hu, and F. C. Lee, “Active-clamp DC/DC converters using magnetic switches,” in Proc. IEEE APEC, Mar. 2001, vol. 2, pp. 946-952.
    [29] Q. Zhao and F. C. Lee, “High-efficiency, high step-up DC-DC converters,” IEEE Trans. on Power Electronics, vol. 18, no. 2, pp. 65-73, Jan. 2003.
    [30] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proc. on Electric Power Applications, vol. 151, no. 2, pp. 182-190, Mar. 2004.
    [31] K. C. Tseng and T. J. Liang, “Analysis of integrated boost-flyback step-up converter,” IEE Proc. on Electric Power Applications, vol. 152, no. 2, pp. 217-225, Mar. 2005.
    [32] O. Krykunov, “Analysis of the Extended Forward Converter for Fuel Cell Applications,” in Proc. IEEE ISIE, Jun. 2007, pp. 661-666.
    [33] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High boost converter using voltage multiplier,” in Proc. IEEE IECON, Nov. 2005, pp. 567-572.
    [34] F. L. Luo, “Negative output Luo converters voltage lift technique,” IEE Proc. on Electric Power Applications, vol. 146, no. 2, pp. 208-224, Mar. 1999.
    [35] F. L. Luo and H. Ye, “Ultra-lift Luo-converter,” IEE Proc. on Electric Power Applications, vol. 152, no. 1, pp. 27-32, Jan. 2005.
    [36] TL494 pulse-width-modulation controlcircuits Datasheet, Texas Instruments, Oct. 2005.
    [37] TLP250 phtotocoupler Datasheet, TOSHIBA, Sep. 2002.

    下載圖示 校內:2011-09-08公開
    校外:2014-09-08公開
    QR CODE