| 研究生: |
饒庭瑋 Rao, Ting-Wei |
|---|---|
| 論文名稱: |
以超音波噴霧熱裂解技術製備具有奈米粒子修飾之氧化鎂鋅紫外光檢測器 Nanoparticles-Decorated MgZnO-Based Ultraviolet Photodetector by Ultrasonic Spray Pyrolysis Deposition |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 共同指導教授: |
劉漢胤
Liu, Han-Yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 超音波噴霧熱裂解法 、紫外光檢測器 、氧化鎂鋅 、奈米花 、奈米粒子 、雙波段 、光電晶體 |
| 外文關鍵詞: | Ultrasonic spray pyrolysis deposition, ultraviolet photodetector, magnesium zinc oxide, nanoflower, nanoparticles, dual-wavelength, phototransistor |
| 相關次數: | 點閱:116 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討利用超音波噴霧熱裂解法沉積氧化鎂鋅應用於紫外光檢測器。超聲波噴霧熱裂解沉積法是一種成本低廉、非真空、製成時間短且易於調變前驅物參雜濃度之薄膜沉積技術。我們將該技術應用於四種紫外光檢測器上,分別為金屬-半導體-金屬、雙波段、PN以及NPN結構。此外,我們藉由將金屬銀奈米粒子添加至紫外光檢測器之吸收層以改善其性能。
為了瞭解氧化鎂鋅薄膜之薄膜厚度、化學組成、結晶性、結晶方向、氧空缺、折射係數、消光係數、材料能隙、表面粗糙度及光透射率,在本研究中使用(一)掃描式電子顯微鏡、(二)穿透式電子顯微鏡、(三)X-射線光電子能譜學、(四)椭圓偏光儀、(五)光致發光、(六)X-射線繞射分析、(七)原子力顯微鏡、(八)霍爾量測、(九)分光光譜儀。
首先,我們使用掃描式電子顯微鏡拍攝樣品的俯視圖以確認氧化鎂鋅薄膜中存在銀奈米粒子。 接著我們採用XPS分析分別確定氧化鎂鋅薄膜有無存在奈米粒子之氧空缺比例變化,並與隨後的光致發光測量獲得一致性的結果。最後,我們透過這些分析確認了紫外光檢測器性能之提升主要由銀奈米粒子所貢獻。
在瞭解薄膜之材料分析後,我們製作了雙波段紫外光檢測器,可應用於紫外光A以及紫外光B之寬波段檢測。 除了雙波段紫外光檢測器之性能隨著不同銀奈米粒子位置而提升外,我們還探討不同吸收層厚度對雙波段紫外光檢測器之影響。
在N-P-N結構的部分,我們製作了由氧化鋅、氧化鎳以及氧化鎂鋅組成之紫外光檢測器。 我們藉由多項元件分析分別比較N-P-N結構與P-N結構製備之紫外光檢測器的特性,包括電流電壓特性、光譜響應量測與感測度等,由此我們證實了N-P-N結構可以有效地增強紫外光檢測器的電性表現。
在本論文中,我們以超音波噴霧熱裂解沉積法製備的氧化鎂鋅紫外光檢測器相對於其他沉積方法而言,具有低成本且製程快速的優點。而我們也透過控制沉積速率成功地實現氧化鎂鋅奈米結構之成長。因此,我們認為超音波噴霧熱裂解沉積法在工業的應用上極具優勢與潛力。
This thesis mainly investigates on the magnesium zinc oxide-based ultraviolet (UV) photodetectors (PDs) by ultrasonic spray pyrolysis deposition. Ultrasonic Spray Pyrolysis Deposition (USPD) is a thin film deposition technology which is low cost, non-vacuum, rapid process and easy to carry out precursor doping, is used to fabricate the magnesium zinc oxide active layer. In the thesis, this technique is applied to four different structure of UV PDs, including metal-semiconductor-metal (MSM), dual-wavelength, P-N and N-P-N structures. In addition, the metal (Ag) nanoparticles were added into the absorption layer of ultraviolet photodetectors to improve the performances of the photodetectors.
In order to know the thickness, chemical composition, crystallinity, crystal directions, oxygen vacancies, refractive index, extinction coefficient, material energy bandgap, surface roughness and transmittance of magnesium zinc oxide film, the (1) Scanning electron microscopy, (2) Transmission electron microscope, (3) X-ray photoelectron spectroscopy, (4) Ellipsometry, (5) Photoluminescence, (6) X-ray diffraction, (7) Atomic force microscope, (8) Hall measurement and (9) UV-VIS-NIR spectrophotometer analysis are adopted in this research.
First, a top view section images of the samples were photographed using a scanning electron microscope to confirm Ag nanoparticles in MgZnO film. Then, we employed XPS analysis to confirm the oxygen vacancies proportion of MgZnO film with and w/o nanoparticles, and the result was consistent with the subsequent photoluminescence measurements. By above analyses, we confirm that the enhanced performance of ultraviolet photodetectors is attributed to Ag nanoparticles.
After the material analysis of the MgZnO film, we made the dual-wavelength ultraviolet photodetectors, which could be applied wide ultraviolet wavelength detection including UVA and UVB region. The performance of dual-wavelength ultraviolet photodetector increases with the different positions of Ag nanoparticles. Besides, we also discuss the effect of the different absorption layers thickness for dual-wavelength ultraviolet photodetector.
In the part of the N-P-N structure, we fabricated the ultraviolet photodetector consisted of ZnO, NiO and Mg0.4Zn0.6O. We compare many analyses of the ultraviolet photodetectors fabricated by this structure with that fabricated by the P-N structure, including current-voltage characteristics, spectral response measurement and detectivity. Thus, we confirm that the electrical performance of ultraviolet photodetector could be effectively enhanced by the N-P-N structure.
In this thesis, the magnesium zinc oxide ultraviolet photodetectors fabricated by the ultrasonic spray pyrolysis deposition have the advantages of the low cost and rapid process relative to other deposition methods. Moreover, we have also successfully grown the MgZnO nanostructures by controlling the deposition rate. We believe that the ultrasonic spray pyrolysis deposition has great potential and advantages in the industrial applications.
[1] P. Cheong, K. F. Chang, Y. H. Lai, K. Ho, I. K. Sou, and K. W. Tam, “A Zigbee-baesd wireless sensor network node for ultraviolet detection of flame,” IEEE Transactions on Industrial Electronics., vol. 58, no. 11, pp. 5271-5277, Nov. 2011.
[2] T. E. Barber, J. Castro, S. Hnatyshyn, N. L. Ayala, J. M. E. Storey, and W. P. Partridge, “Analysis of diesel engine exhaust by ultraviolet absorption spectroscopy,” Analytical Letters., vol. 34, no. 14, pp. 2493-2506, Jun. 2007.
[3] P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, and H. Franke, “Water-core waveguide for pollution measurements in the deep ultraviolet,” Applied Optics., vol. 37, no. 21, pp. 4991-4997, Jul. 1998.
[4] W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coating,” IEEE Transactions on Electron Devices., vol. 50, no. 2, pp. 352-358, Feb. 2003
[5] L. O. Bjorn, and R. L. McKenzie. “Attempts to probe the ozone layer and the ultraviolet-B levels of the past, “Ambio, vol. 36, no. 5, pp. 366-371, Jul. 2007.
[6] O. Bulteel, A. Afzalian, and D. Flandre, “Fully integrated blue/UV SOI CMOS photosensor for biomedical and environmental applications,” Analog Integrated Circuits and Signal Processing., vol. 65, no. 3, pp. 399-405, Dec. 2010.
[7] J.D. Hwang and G.S. Lin, “Single-and dual-wavelength photodetectors with MgZnO/ ZnO metal-semiconductor-metal structureby varying the bias voltage,” Nanotechnology., vol. 27, no. 37, Sep. 2016.
[8] N. Hu, D.Y. Jiang, G.Y. Zhang, Z.X. Guo, W. Zhang, X.J. Yang, S. Gao, T. Zheng, Q.C. Liang and J.H. Hou, “Voltage controlled dual-wavelength ZnO/Au/MgZnO UV photodetectors,” Materials Research Bulletin., vol. 103, pp. 294-298, Jul. 2018.
[9] Y.M. Juan, S.J. Chang, H.T. Hsueh, T.C. Chen, S.W. Huang, Y.H. Lee, T.J. Hsueh and C.L. Wu, “Self-powered hybrid humidity sensor and dual-band UV photodetector fabricated on back-contact photovoltaic cell,” Sensors and Actuators B-Chemical., vol. 219, pp. 43-49, Nov. 2015.
[10] H.Y. Liu, W.C. Sun, S.Y. Wei and S.M. Yu “Characterization of TiO2-Based MISIM Ultraviolet Photodetectors by Ultrasonic Spray Pyrolysis,” IEEE Photonics Technology Letters., vol. 28, no. 6, pp. 637-640, Mar. 2016.
[11] X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei and S. Ruan, “Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes,” Applied Physics Letters., vol. 94, no. 12, 23 Mar. 2009.
[12] S.X. Liu, T. Wang and Z.Z. Chen “High-Performance of Al Nanoparticle Enhanced 4H-SiC MSM Photodiodes for Deep Ultraviolet Detection,” IEEE Electron Device Letters., vol. 38, no. 10, pp. 1405-1408, Oct. 2017.
[13] W.C. Lien, D.S. Tsai, D.H. Lien, D.G. Senesky, J.H. He and A.P. Pisano, “4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetectors in Operation of 450 degrees C,” IEEE Electron Device Letters., vol. 33, no. 11, pp1586-1588, Nov. 2012.
[14] S. Krishna, N. Aggarwal, A. Gundineda, A. Sharma, S. Husale, K.K. Maurya and G. Gupta, “Correlation of donor-acceptor pair emission on the performance of GaN-based UV photodetector,” Materials Science in Semiconductor Processing., vol. 98, pp. 59-64, Aug. 2019.
[15] L.S. Vikas, K.A. Vanaja, P.P. Subha and M.K. Jayaraj, “Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction,” Sensors and Actuators A-Physical., vol. 242, pp. 116-122, May 2016.
[16] H. Ahmad and T. Tamil, “High responsivity, self-powered carbon-zinc oxide hybrid thin film based photodetector,” Applied Nanoscience., vol. 8, no. 7, pp. 1755-1765, Oct. 2018.
[17] Z.J. Pan, X.L. Zhao, W.B. Peng, X.M. Qi and Y.N. He, “A ZnO-Based Programmable UV Detection Integrated Circuit Unit,” IEEE Sensors Journal., vol. 16, no. 22, pp. 7919-7923, Nov. 2016.
[18] M. Kumar, H.S. Kojori, S.J. Kim, H.H. Park, J. Kim and J.H. Yun, “Plasmonic effect-enhanced Ag nanodisk incorporated ZnO/Si metal-semiconductor-metal photodetectors,” Journal of Photonics for Energy., vol. 6, no. 4, Oct. 2016.
[19] S. Han, S.M. Liu, Y.M. Lu, P.J. Cao, W.J. Liu, Y.X. Zeng, F. Jia, X.K. Liu and D.L. Zhu, “High performance solar-blind ultraviolet photo detector based on mixed-phase MgZnO thin film with different interfaces deposited by PLD method,” Journal of Alloys and Compounds., vol. 694, pp. 167-174, Feb. 2017.
[20] R. Bhardwaj, P. Sharma, R. Singh, M. Gupta and S. Mukherjee, “High Responsivity MgxZn1-xO Based Ultraviolet Photodetector Fabricated by Dual Ion Beam Sputtering,” IEEE Sensors Journal., vol. 18, no. 7, pp. 2744-2750, Apr. 2018.
[21] V.S. Rana, J.K. Rajput, T.K. Pathak and L.P. Purohit, “Multilayer MgZnO/ ZnO thin films for UV photodetectors,” Journal of Alloys and Compounds., pp. 724-729, Oct. 2018.
[22] C.Y. Huang, C.C. Kang, Y.C. Ma, Y.C. Chou, J.H. Ye, R.T. Huang, C.Z. Siao, Y.C. Lin, Y.H. Chang, J.L. Shen and T.Y. Lin, “p-GaN/ n-ZnO nanorods: the use of graphene nanosheets composites toincrease charge separation in self-powered visible-blind UV photodetectors,” Nanotechnology., vol. 29, no. 44, Nov. 2018.
[23] J.D. Hwang, F.H. Wang, C.Y. Kung and M.C. Chan, “Using the Surface Plasmon Resonance of Au Nanoparticles to Enhance Ultraviolet Response of ZnO Nanorods-Based Schottky-Barrier Photodetectors,” IEEE Transactions on Nanotechnology., vol. 14, no. 2, pp. 318-321, Mar. 2015.
[24] L.H. Zhao, Z.Y. Gao, J. Zhang, L.W. Lu and D.S. Zou, “Flexible lateral-bridged ZnO nanowire UV sensor for focal-plane image sensor appli-cation,” Applied Physics Express., vol. 11, no. 11, Nov. 2018.
[25] F.H. Alsultany, Z. Hassan and N.M. Ahmed, “A high-sensitivity, fast-response, rapid-recovery UV photodetector fabricated based on catalyst-free growth of ZnO nanowire networks on glass substrate,” Optical Materials., vol. 60, pp. 30-37, Oct. 2016.
[26] M. Kumar, H. Jeong and D. Lee, “UV photodetector with ZnO nanoflowers as an active layer and a network of Ag nanowires astransparent electrodes,” Superlattices and Microstructures., vol. 126, pp. 132-138, Feb. 2019.
[27] S. Kang, R. Nandi, H. Kim, K.U. Jeong and C.R. Lee, “Synthesis of n-AlGaN nanoflowers by MOCVD for high-performance ultraviolet-C photodetectors,” Journal of Materials Chemistry C., vol. 6, no. 5, pp. 1176-1186, Feb. 2018.
[28] M.A. Mahdi, J.J. Hassan, Z. Hassan and S.S. Ng, “Growth and characterization of ZnxCd1−xS nanoflowers by microwave-assisted chemical bath deposition,” Journal of Alloys and Compounds., vol. 541, pp. 227-233, Nov. 2012.
[29] Y.N. Hou, Z.X. Mei, H.L. Liang, D.Q. Ye, S. Liang, C.Z. Gu, and X.L. Du, “Comparative study of n-MgZnO/p-Si ultraviolet-B photodetector performance with different device structures,” Applied Physics Letters., vol. 98, no. 26, Jun. 2011.
[30] C.G. Tian, D.Y. Jiang, J.A. Pei, L. Sun, R.S. Liu, Z.X. Guo, J.H. Hou, J.X. Zhao, Q.C. Liang, S. Gao and J.M. Qin, “Performance enhancement of MgZnO-based visible-blind photodetectors by Pt nanoparticles,” Journal of Alloys and Compounds., vol. 667, pp.65-68, May. 2016.
[31] Z.X. Guo, D.Y. Jiang, M. Zhao, T. Zheng, J.W. Lv, J.N. Pei, N. Hu, S. Gao, Q.C. Liang, J.X. Zhao, J.H. Hou and J.M. Qin, “Surface plasmon-enhanced ultraviolet photodetectors by using Au nanoparticles embedded in MgZnO thin films,” Optics Communications., vol. 399, pp. 68-72, Sep. 2017.
[32] M.I. Stockman, “Nanoplasmonics: The physics behind the applications,” Physics Today., vol. 64, no. 2, pp. 39-44, Feb. 2011.
[33] W.L. Barnes, A. Dereux and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature., vol. 424, no. 6950, pp. 824-830, Aug. 2003.
[34] Y. Lin, C.X. Xu, J.T. Li, G.Y. Zhu, X.Y. Xu, J. Dai and B.P. Wang, “Localized Surface Plasmon Resonance-Enhanced Two-Photon Excited Ultraviolet Emission of Au-Decorated ZnO Nanorod Arrays,” Advanced Optical Materials., vol. 1, no. 12, pp. 940-945, Dec. 2013.
[35] J. Dintinger, S. Klein and T.W. Ebbesen, “Molecule- surface plasmon interactions in hole arrays: Enhanced absorption, refractive indexchanges, and all-optical switching,” Advanced Materials., vol. 18, no. 10, pp. 1267-1270, May. 2016.
[36] Z.X. Guo, D.Y. Jiang, N. Hu, X.J. Yang, W. Zhang, Y.H. Duan, S. Gao, Q.C. Liang, T. Zheng and J.W. Lv, “Significant Enhancement of MgZnO Metal -Semiconductor-Metal Photodetectors via Coupling with PtNanoparticle Surface Plasmons,” Nanoscale Research Letters., vol. 13, Jun. 2018.
[37] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, “Photoconductivity of ultrathin zinc-oxide films,” Japanese Journal of Applied Physics., vol. 33, No. 12A, pp. 6611-6615, Dec. 1994.
[38] P. Sharma, K. Sreenivas, K.V. Rao, “Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering,” Journal of Applied Physics, Vol. 93, No. 7, pp. 3963-3970, Apr. 2003.
[39] A.R.A.A. Sakhta, A.H. Khdro and A.N. Darwisho, “Morphological and Optical Properties of Pure and Mg Doped Tin Oxide Thin Films Prepared by Spray Pyrolysis Method,” American Journal of Nanosciences, vol. 3, no. 2, pp. 19-23, Jun. 2017.
[40] D. Bagnall, Y. Chen, Z. Zhu, T. Yao, M. Shen and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Applied Physics Letters., vol. 73, no. 8, pp. 1038-1040, Aug. 1998.
[41] L.T. Dou, Y. Yang, J.B. You, Z.R. Hong, W.H. Chang, G. Li and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nature Communications., Vol. 5, Nov. 2014.
[42] S.O. Kasap, “Optoelectronics and Photonics: Principles and Practices,” pp. 417-418.
[43] Z.M. Zhang, Y. Ning and X.S. Fang “From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors,” Journal of Materials Chemistry C., vol. 7, no. 2, pp. 223-229, Jan. 2019.
[44] L.Q. Qin, D.L. Shao, C. Shing and S. Sawyer “Wavelength selective p-GaN/ZnO colloidal nanoparticle heterojunction photodiode,” Applied Physics Letters., vol. 108, no. 7, Feb. 2013.
[45] Q.M. Fu, D.C. He, Z.C. Yao, J.L. Peng, H.Y. Zhao, H. Tao, Z. Chen, Y.F. Tu, Y. Tian, D. Zhou and G. Zheng, “Self-powered ultraviolet photodetector based on ZnO nanorod arrays decorated with sea anemone-like CuO nanostructures,” Materials Letters., vol. 222, pp. 74-77, Jul. 2018.
[46] Y.N. Hou, Z.X. Mei, H.L. Liang, D.Q. Ye, C.Z. Gu and X.L. Du, “Dual-band MgZnO ultraviolet photodetector integrated with Si,” Applied Physics Letters., vol. 102, no. 15, Apr. 2013.
[47] Y.Y. Qu, Z.P. Wu, M.L. Ai, D.Y. Guo, Y.H. An, H.J. Yang, L.H. Li and W.H. Tang, “Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes,” Journal of Alloys and Compounds., vol. 680, pp. 247-251, Sep. 2016.
[48] S. Oh, M.A. Mastro, M.J. Tadjer and J.H. Kim, “Solar-blind metal-semiconductor-metal photodetectors based on an exfoliated β-Ga2O3 micro-flake,” ECS Journal of Solid State Science and Technology., vol. 6, no. 8, pp. 79-83, 2017.
[49] X.W. Zhang, D. Meng, Z.J. Tang, D. Hu, H.J. Geng, H.Y. Zheng, S.P. Zang, Z.R. Yu and P.P. Peng, “Preparation of radial ZnSe-CdS nano-heterojunctions through atomic layer deposition method and their optoelectronic applications,” Journal of Alloys and Compounds., vol. 777, pp. 102-108, Oct. 2018.
[50] D. Caliskan, B. Butun, S. Ozcan and E. Ozbay, “Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate,” Journal of Vacuum Science & Technology B., vol. 31, no. 2, Mar. 2013.
校內:2024-07-13公開