| 研究生: |
林佳枚 Lin, Chia-Mei |
|---|---|
| 論文名稱: |
熱處理對氧化鋁陽極膜微觀組織與電化學性質之影響研究 Effect of heat treatment on the microstructure and electrochemical characteristics of the anodized aluminum oxide |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 陽極化 、鋁 、熱處理 、穿透式電子顯微鏡 |
| 外文關鍵詞: | alumina, anodic, TEM, heat treatment |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於鋁電解電容器而言,最主要影響其電容器的因素為陽極介電層的性質。一般而言,使用高純度鋁箔於水溶液中利用外加電位方式對其進行陽極化成處理(forming),使其生成緻密的氧化層以供隔絕電子而達到介電之作用。
本研究中藉由改變對鋁箔處理之程序,即分別在化成陽極皮膜前、後施予500℃之熱處理、以及加入第二道化成程序,探討經過不同熱處理程序及熱處理時間的延長,對於所得到之氧化鋁皮膜介電性質與其微觀組織之影響。實驗中使用85℃之己二酸銨水溶液於100V之電壓下化成陽極皮膜,此時之皮膜為非晶質結構。又於空氣中分別進行500℃、2分鐘及30分鐘之前、後熱處理,以探討熱處理時間不同對其所造成之影響。
而於鋁箔上所成長之陽極氧化膜,在型態上主要可分為兩種,分別為非晶質(amorphous)及結晶狀態之氧化鋁。而所得之陽極膜可利用超薄切片技術在穿透式電子顯微鏡下對其橫截面作表面型態觀察、結構及成分的分析並量測其厚度,同時使用LCR meter量測皮膜之電容值,藉此可計算出皮膜之相對介電常數值。另外,對於皮膜之電化學特性之探討,利用交流頻譜阻抗測試量測並模擬其電化學系統特徵,套用其相對應之等效電路並可擬合(fitting)計算皮膜之電容值及電阻值;此外,利用外加微小電流觀察其到達化成電位所需時間(電位回覆時間)以判斷其皮膜之完整性,同時量測其可承受之電壓大小(耐電壓);並對皮膜做掃瞄電位以量測電流之變化值,藉此可觀察皮膜之漏電流大小及其崩潰電位。
實驗結果顯示,在未經熱處理時即予以化成(100V)將得到整層為均勻非晶質結構之陽極皮膜。將鋁箔於空氣中進行500℃前熱處理(加熱時間分別為2分鐘及30分鐘),之後再進行化成處理,此時可以獲得內層為非晶質、外層為柱狀結晶氧化鋁(γ΄-Al2O3)之陽極皮膜。而當經過化成處理後,再對其陽極化成皮膜進行500℃後熱處理時,將可使皮膜外部產生結晶化型態,唯此時結晶呈現細小顆粒狀態。
前熱處理後再進行陽極化時可有效降低化成過程中所消耗的電量。隨著熱處理時間的增長將可使之後化成所生長之皮膜有較佳之結晶性,且此時將可大幅的增加其電容值。中間熱處理後則可使皮膜由非晶質轉變為結晶,增加熱處理時間也將使其結晶化程度有所提升,而此時因皮膜厚度增加而導致電容量隨熱處理時間增長而下降。經過熱處理後皮膜因結晶之生成而使相對介電常數有所提高。
經過第二道化成處理後可修復皮膜之缺陷並提高其皮膜電阻值,而結晶型態陽極皮膜的結晶性也將有所提高而相對介電常數有所增加。
The influences of heat treatment (before and after) on the microstructure and electrochemical characteristics of the anodizing oxide films formed in 85℃ aqueous ammonium adipate electrolyte were investigated. The morphology, crystal structure, and thickness of the anodized oxide films were analyzed and measured by TEM. Using the thickness and the measuring capacitance by LCR-meter of oxide film could calculate relative dielectric constant of oxide. And the electrochemical impedance spectroscope and I-V behavior of the oxide film could also be determined.
Both pre- and post heat treatments at 500℃ could induce the formation of crystalline γ΄-Al2O3 in the outer layer of anodized aluminum oxide and consequently increase the relative dielectric constant of the film.
The pre-heat treatment could retard film growth during anodizing and economized the required charge to anodize the oxide.
The post heat treatment could transform the amorphous anodized oxide to the crystalline accompanied with defect formation and cause a substantial decrease in the resistance of the oxide layer.
The re-anodization could further develop and extend the crystalline oxide, and cause an increase in the relative dielectric constant of the oxide film. Additionally, both the thickness and resistance of the anodized oxide film were increased by employing re-anodization treatment.
1. V. F. Henley, Anodic Oxidation of Aluminum and Its Alloys, Pergamon Press,
Oxford, 1982.
2. G. C. Tu, C. F. Lin, Y. M. Peng, C. R. Song, The growth of crystalline anodic
barrier film on aluminum through hydrous pretreatment, 781
3. C. Crevecoeur, H. J. de Wit, The growth of anodic aluminum oxide layers after
a heat-treatment, J. Electrochem. Soc., vol.121, p.1465, 1974.
4. D. J. Stirland, R. W. Bicknell, Studies of the structure of anodic oxide
films on aluminum, I, J. Electrochem. Soc., vol.106, p.481, 1959.
5. W. J. Bernard, S. M. Florio, Anodic oxide growth on aluminum in the presence
of a thin thermal oxide layer, J. Electrochem. Soc., vol.132, p.2319, 1985.
6. C. T. Chen, G. A. Hutchins, Crystalline anodic oxide growth on aluminum foil
in an aqueous ammonium dihydrogen phosphate anodization electrolyte, J.
Electrochem. Soc., vol.132, p.1567, 1985.
7. R. S. Alwitt, H. Taikei, Crystalline Aluminum Oxide Films, in “Passivity of
Metals and Semiconductors”, M. Froment, Editor, P.741, Elsevier Science
Publishers, Amsterdam, 1983.
8. C. Crevecoeur, H. J.de Wit, The Electrochemical Society Extended Abstracts,
vol.78-1, p.413, Seattle, Washington, May 21-26, 1978.
9. R. L. Chiu, P. H. Chang, C. H. Tung, The effect of anodizing temperature on
anodic oxide formed on pure Al thin films, Thin solid films, vol.260, p.47,
1995.
10. Y. H. Choo, O. F. Devereux, Barrier-type aluminum oxide films formed under
prolonged anodizing. (I), J. Electrochem. Soc., vol.122, p.1645, 1975.
11. T. A. Libsch, O. F. Devereux, Barrier-type aluminum oxide films formed under
prolonged anodizing. (II), J. Electrochem. Soc., vol.122, p.1654, 1975.
12. P. G. Anderson, O. F. Devereux, Steady-state anodic leakage current in
barrier-type aluminum oxide films, J. Electrochem. Soc., vol.122, p.267,
1975.
13. R. L. Chiu, P. H. Chang, Al2O3 films formed by anodic oxidation of Al-1
weight percent Si-0.5 weight percent Cu films, J. Electrochem. Soc.,
vol.142, p.525, 1995.
14. K. Kobayashi, K. Shimizu, H. Nishibe, The structure of barrier anodic films
formed on aluminum covered with a layer of thermal oxide, J. Electrochem.
Soc., vol.133, p.140, 1986.
15. K. Shimizu, S. Tajima, G. E. Thompson, G. C. Wood, The development of flaws
containing γ’-crystalline alumina regions in barrier anodic films on
aluminum, Electrochimica Acta, vol.25, p.1481, 1980.
16. K. Shimizu, G. M. Brown, K. Kobayashi, P. Skeldon, G. E. Thompson, G. C.
Wood, Ultramicrotomy – a route towards the enhanced understanding of the
corrosion and filming behaviour of aluminium and its alloys, Corrosion
Science, vol.40, p.1049, 1998.
17. R. C. Furneaux, G. E. Thompson, G. C. Wood, The application of
ultramicrotomy to the electronoptical examination of surface films on
aluminium, Corrosion Science, vol.18, p.853, 1978.
18. G. A. Hutchins, C. T. Chen, The amorphous to crystalline transformation of
anodic aluminum oxide during anodization in an ammonium citrate electrolyte,
J. Electrochem. Soc., vol.133, p.1332, 1986.
19. 清水健一, 小林賢三, G. E. Thompson, G. C. Wood, Smoothing of Aluminum
surfaces during barrier anodic oxide growth on Aluminum, 金屬表面技術(日),
vol.42, NO.6, p.63, 1991.
20. J. S. L. Leach, P. Neufeld, Pore structure of anodic Al2O3 films, Corrosion
Sci., 9 (1969) 413.
21. C. Crevecoeur, H. J. de Wit, The anodization of heated aluminum, J.
Electrochem. Soc., vol.134, p.808, 1987.
22. K. Kobayashi, K. Shimizu, Influence of γ-alumina on the structure of
barrier anodic oxide films on aluminum, J. Electrochem. Soc., vol.135,
p.908, 1988.
23. A. F. Beck, M. A. Heine, E. J. Caule, M. J. Pryor, The kinetics of the
oxidation of Al in oxygen at high temperature, Corrosion science, vol.7,
p.1, 1967.
24. Republic Foil Inc., Br. Pat., 1,056,609 (1967)
25. C. Crevecoeur, H. J.de Witt, Influence of crystalline Alumina on the
anodization of Al, Paper no. 132, Presented at the 27th Meeting of the
International Society of Electrochemistry, Zurish, Sept., 6-10, 1976.
26. R. S. AAlwitt, Paper C-118,Presented at the E. C. I. S. meeting, Tokyo, Oct.
15. 1980.
27. J. K. Chang, C. M. Liao, C. H. Chen and W. T. Tsai, Effect of treatment on
the microstructure and electrochemical characteristics of the anodized
aluminum oxide formed in ammonium adipate solution, J. Electrochem. Soc., in
press.
28. E. J. W. Verwey, Time resolved electrochemical impedance of the guillotined
aluminium electrode, Journal of Chemical Physics, vol.3, p.592, 1935.
29. K. Shimizu, G. E. Thompson, G. C. Wood and Y. Xu, Direct observations of
ion-implanted xenon marker layers in anodic barrier films on Aluminium, Thin
Solid Films, vol.88, p.255, 1982.
30. K. Shimizu, G. M. Brown, H. Habazaki, K. Kobayashi, P. Skeldon, G. E.
Thompson and G. C. Wood, Impurity distributions in barrier anodic films on
aluminum: A GDOES depth profiling study, Electrochim. Acta, vol.44, p.2297,
1999.
31. 程子萍, 金屬材料鈍化現象之交流阻抗研究, 博士論文, 國立成功大學, 1990.