簡易檢索 / 詳目顯示

研究生: 王雁興
Wang, Yen-Hsing
論文名稱: x(Mg0.95Co0.05)TiO3-(1-x)(Ln0.5Na0.5)TiO3陶瓷介電特性及其在微波元件之應用
Dielectric Properties and Microwave Applications of x(Mg0.95Co0.05)TiO3-(1-x)(Ln0.5Na0.5)TiO3 Ceramics
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: 陶瓷微波
外文關鍵詞: microwave, ceramics
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將探討x(Mg0.95Co0.05)TiO3-(1-x)(Ln0.5Na0.5)TiO3微波介電陶瓷的介電特性及材料的微結構(在本論文裡Ln是指鑭系元素中的La+3、Nd+3)。(Ln0.5Na0.5)TiO3陶瓷具有高的介電常數εr和正的共振頻率溫度係數τf。另一方面(Mg0.95Co0.05)TiO3陶瓷具有高品質因素Q×f 和負的共振頻率溫度係數τf。經實驗結果發現,適當調整x值可使τf趨近於零且具有不錯的品質因素Q×f 及介電常數εr。最後,添加燒結促進劑B2O3促使材料緻密化,降低燒結溫度。由實驗結果,添加0.5wt%的B2O3於0.88(Mg0.95Co0.05) TiO3-0.12(La0.5Na0.5)TiO3材料裡,可在1225oC時燒結且具有最佳介電特性;介電常數εr為22.77,品質因素Q×f 為98200,共振頻率溫度係數τf為+1.83ppm/oC。與原來未添加燒結促進劑的材料比較(燒結溫度1325 oC)明顯降低燒結溫度。另外,分別以88MCLNT+ 0.5wt%B2O3此材料及FR4與Al2O3為基板,設計一個使用0°饋入結構的二階Butterworth髮夾式濾波器來比較與驗證此材料88MCLNT+ 0.5wt%B2O3具有穩定的共振頻率溫度係數τf、高介電常數εr及高品質因素Q×f。

    The microwave dielectric properties and the microstructures of the x(Mg0.95Co0.05)TiO3-(1-x)(Ln0.5Na0.5)TiO3 ceramics were investigated(where Ln represents a lanthanide: La+3、Nd+3). (Ln0.5Na0.5)TiO3 ceramic has a high dielectric constant εr and a positive temperature coefficient of resonant frequency τf. On the other hand, (Mg0.95Co0.05)TiO3 ceramic has a high quality factor Q×f and a negative temperature coefficient of resonant frequency τf . The results show that zero τf value and excellent Q×f value and dielectric constant εr can be obtained by appropriately adjusting the x value. Finally, we add sintering aid of B2O3 to promote the material density and reduce the sintering temperature. The outcome reveals that the specimen of 0.88(Mg0.95Co0.05)TiO3-0.12(La0.5Na0.5)TiO3 with 0.5wt% B2O3 can be sintered at 1225oC and has the characteristics of εr~22.77、Q×f value~98200、and τf value~+1.83ppm/oC. Compare the material of 88MCLNT+0.5wt%B2O3 with pure material which is sintered at 1325oC, and the sintering temperature of the material of 88MCLNT+0.5wt%B2O3 was Conspicuously reduced. Otherwise, we fabricate a second order Butterworth hairpin filter using 0° feed structure on the substrates 88MCLNT+0.5wt%B2O3, FR4 and Al2O3 respectively to compare and verify that the material of 88MCLNT+0.5%B2O3 has stable temperature coefficient of resonant frequency τf, high dielectric constant εr, and excellent quality factor Q×f.

    第一章 緒論 1 1-1前言 1 1-2研究目的 1 第二章 介電材料原理 2 2-1介電材料的微波分析 2 2-2介電共振器 7 2-3鈦鐵礦與鈣鈦礦之結構 10 2-3-1鈦鐵礦之結構 10 2-3-2鈣鈦礦之結構 11 2-4燒結原理 12 2-4-1液相燒結理論 12 第三章 微帶線及濾波器之原理 14 3-1微帶線原理 14 3-1-1微帶傳輸線介紹 14   3-1-2微帶線傳輸組態 14 3-1-3微帶線各項參數公式計算及考量 15 3-2微帶線濾波器簡介 21 3-3偶合共振器 22 3-4 共振器耦合型態 22 3-4-1 電場耦合 23 3-4-2 磁場耦合 26 3-4-3 混和耦合 29 3-5 饋入結構分析 31 3-5-1 非對稱性饋入 31 3-5-2 對稱性饋入 34 3-6非對稱性饋入點的分析 35 3-6-1饋入線的加載Q(Loaded Q) 36 3-6-2 使用非對稱性饋入結構的可調式零點設計 36 第四章 實驗程序與量測方法 39 4-1微波介電材料的製備 39 4-2微波介電材料的特性分析與量測 42 4-2-1 X-Ray(XRD)分析 42 4-2-2掃瞄式電子顯微鏡(SEM)分析 42 4-2-3密度的量測 42 4-2-4微波介電特性的量測 43 4-3濾波器之製作與量測 44 4-3-1濾波器設計規格 44 4-3-2濾波器製作 44 4-3-3濾波器量測 45 第五章 實驗結果與討論 46 5-1 x(Mg0.95Co0.05)TiO3-(1-x)(Ln0.5Na0.5)TiO3微波特性之探討 46 5-1-1 x(Mg0.95Co0.05)TiO3-(1-x)(La0.5Na0.5)TiO3微波特性之探討 46 5-1-2 x(Mg0.95Co0.05)TiO3-(1-x)(Nd0.5Na0.5)TiO3微波特性之探討 58 5-2 88MCLNT 添加B2O3之微波特性探討 68 5-3濾波器的響應 78 5-3-1 FR4基板 78 5-3-2 Al2O3基板 83 5-3-3 88MCLNT+0.5wt%B2O3基板85 第六章 結論 88 參考文獻 90

    [1] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon and H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” Jpn. J. Appl. Phys., vol. 33, pp. 5466-5470, 1994
    [2] H. Takahashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata, K. Kuroki and S. Nakano, “Dielectric Characteristics of Ceramics at Microwave Frequencies,” Jpn. J. Appl. Phys. vol. 30, pp. 2339-2342,1991
    [3] C.-M. Tsai, S.-Y. Lee, and C.-C. Tsai, “Hairpin filters with tunable transmission
    zeros,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, May 2001, pp. 2175–2178.
    [4] David M. Pozar “Microwave Engineering”, Addison-Wesley,1998
    [5] D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
    [6] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, pp. 189-202, 1979.
    [7] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch. 4.
    [8] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
    [9] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase s-intering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
    [10] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
    [11] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
    [12] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe allo-ys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
    [13] L. A. Trinogga, Guo Kaizhou, I. C. Hunter, “Practical microstrip circuit design,” UK: Ellis Horwood, 1991.
    [14] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
    [15] E. O. Hammerstard, in Proceedings of the european microwave conference., pp. 268-272, 1975.
    [16] E. J. Denlinger, “Losses of microstrip lines,” IEEE. Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980
    [17] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998
    [18] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
    [19] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Te- ch., vol. MTT-20, pp. 573-578, Sep. 1980.
    [20] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
    [21] R. L. Geiger, P. E. Allen, N.R.Strader, VLSI design techniques for analog and digital circuits., New York: McGraw-Hill, 1990, pp. 674-685.
    [22] J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits,” McGraw-Hill, 1992.
    [23] L. H. Hsieh, K. Chang, “Tunable Microwave Bandpass Filters With Two
    Transmission Zeros,” IEEE Trans. Microwave Theory Tech., vol. 51,NO.2 pp.
    520-525, Feb. 2003.
    [24] S.-Y. Lee and C.-M. Tsai, “New cross-coupled filter design using improved
    hairpin resonators,” IEEE Trans. Microwave Theory Tech., vol.48, pp.
    2482–2490, Dec. 2000.
    [25] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines,
    2nd ed. Boston, MA: Artech House, ch. 3.
    [26] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig.,pp. 473-476, 1985.
    [27] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of lo-w-loss materials by dielectric rod resonator method,” IEEE Trans. Micr- owave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
    [28] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., vol. MTT-28, pp. 1077-1085, 1980.
    [29] Hee-Kyun Shin, Hyunho Shin, Hyun Suk Jung, Seo-Yong Cho , Jeong-Ryeol Kim , Kug Sun Hong, “Role of lithium borosilicate glass in the ecompositionof MgTiO3-based dielectric ceramic during sintering”, Mat. Res. Bull., vol.41, pp.1206- 1214, 2006.

    下載圖示
    2011-06-23公開
    QR CODE