簡易檢索 / 詳目顯示

研究生: 廖昱信
Liao, Yu-Hsin
論文名稱: 應用帝王企鵝取暖演算法於斷路器開關設備巡檢排程規劃之研究
Application of Emperor Penguin Optimizer to Patrol and Inspection Planning of Circuit Breakers
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 帝王企鵝取暖演算法斷路器開關設備巡檢排程規劃
外文關鍵詞: Emperor penguin optimizer, circuit breaker, patrol and inspection planning
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出帝王企鵝取暖之仿生型智能演算法,並應用於斷路器開關設備巡檢排程規劃,研究主旨在於調整斷路器開關巡檢週期,俾以達成降低系統停電損失,同時節省設備巡視點檢成本支出。本文統整斷路器開關停電損失量及巡檢總成本之數學建模,然後輔以帝王企鵝取暖演算法進行斷路器開關設備巡檢排程策略擬定。本文採行之帝王企鵝取暖演算法乃由企鵝移動群聚取暖行為啟發,並加以建模為尋優機制,以有助於求解最佳化問題。而為驗證本文所提方法之可行性,本文分別經由既有測試系統與實際配電系統之不同具數的斷路器開關設備進行模擬,並其他演算法進行運算效能差異分析。茲由模擬結果可知,本文所應用之方法於斷路器開關設備巡檢排程規劃,確已優質可行,於電力實務上兼具工程應用價值。

    This thesis applies the emperor penguin optimizer to patrol and inspection planning of circuit breakers, aiming at adjusting the patrol and inspection frequency of circuit breakers with anticipation of achieving the reduction of outage times and inspection cost. By taking the outage loss and inspection cost into consideration, the study develops mathematical models for this study. This is followed by the application of emperor penguin optimizer to assist in the planning decisions of circuit breakers patrol and inspection. This algorithm is inspired based on mimicking huddling behavior of emperor penguins, by which it is modeled as an optimization method for solving problems.
    To verify the proposed method, the thesis has performed simulations on the test system and practical system with different number of circuit breakers along with computing comparisons with other approaches. Test results indicate the superiority and the feasibility of the proposed method, which are of practical application values for electrical power engineering.

    中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 X 第一章 緒論 1 1-1 研究動機與文獻探討 1 1-2 研究方法與步驟敘述 4 1-3 論文各章重點簡述 6 第二章 斷路器巡檢排程 7 2-1 前言 7 2-2 斷路器開關設備介紹 8 2-3 斷路器維護作業 10 2-4 斷路器巡檢排程問題數學建模 11 2-4-1 斷路器巡檢週期擬定 11 2-4-2 故障率數學模型 12 2-4-3 目標函數建立 14 2-4-4 排程規劃限制式 16 2-5 本章結論 17 第三章 演算法之建模與計算流程 18 3-1 前言 18 3-2 帝王企鵝取暖演算法探討及數學建模 18 3-3 帝王企鵝取暖演算法之計算流程簡介 25 3-3-1 應用帝王企鵝取暖演算法於求解最佳化問題之演算流程 26 3-3-2 應用帝王企鵝取暖演算法於斷路器開關巡檢排程之演算流程 27 3-4 本章結論 32 第四章 研究成果討論 33 4-1 前言 33 4-2 斷路器開關設備故障率函數 33 4-3 演算法參數設定 34 4-3-1 包含22具斷路器之測試系統介紹 34 4-3-2 帝王企鵝族群數量(K)之探討 36 4-3-3 避敵機率(α)之探討 37 4-3-4 天氣變化機率(β)之探討 38 4-4 模擬結果分析 40 4-4-1 22具斷路器巡檢排程規劃測試分析 40 4-4-2 40具斷路器巡檢排程規劃測試分析 49 4-4-3 50具斷路器巡檢排程規劃測試分析 64 4-5 本章結論 76 第五章 結論及未來研究方向 77 5-1 結論 77 5-2 未來研究方向 78 參考文獻 79

    [1] 台灣電力公司各縣市用電資訊 [Online] Available:
    https://www.taipower.com.tw/tc/page.aspx?mid=101
    [2] 台灣電力股份有限公司,「2019年台灣電力公司永續報告書」,民國108年。
    [3] Y. Liao, H. Liu, Y. Xu, W. Zhou, and C. Zhou, “A Holistic Approach to Risk-Based Maintenance Scheduling for HV Cables,” IEEE Access, Vol. 7, pp. 118975-118985, August 2019.
    [4] Four Types of Maintenance Strategy [Online] Available:
    https://new.abb.com/medium-voltage/service/maintenance/feature-articles/4-types-of-maintenance-strategy-which-one-to-choose
    [5] N. Walliyamethee and K. Hongesombut, “Maintenance Scheduling of Distribution Reclosers Using RCM Techniques,” 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference, Macao, China, pp. 1-5, February 2019.
    [6] J. Warner, W. Jewell, and P. Bhusal, “Condition Assessment and Maintenance Scheduling for Distribution Reclosers,” IEEE PES T&D 2010, New Orleans, USA, pp. 1-6, June 2010.
    [7] A. Moradkhani, M. R. Haghifam, and M. Mohammadzadeh, “Failure Rate Modeling of Electric Distribution Overhead Lines Considering Preventive Maintenance,” IET Generation, Transmission and Distribution, Vol. 8, No. 6, pp. 1028-1038, June 2014.
    [8] A. Abiri-Jahromi, M. Fotuhi-Firuzabad, and E. Abbasi, “An Efficient Mixed-Integer Linear Formulation for Long-Term Overhead Lines Maintenance Scheduling in Power Distribution Systems,” IEEE Transactions on Power Delivery, Vol. 24, No. 6, pp. 2043-2053, October 2009.
    [9] S. Laohanan and D. Banjerdpongchai, “Dynamic Programming Approach to Optimal Maintenance Scheduling of Substation Equipment Considering Life Cycle Cost and Reliability,” 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chiang Rai, Thailand, pp. 388-391, July 2018.
    [10] S. Raghavan and B. Chowdhury, “State Diagram-Based Life Cycle Management Plans for Power Plant Components,” IEEE Transactions on Smart Grid, Vol. 6, No. 2, pp. 965-972, March 2015.
    [11] J. Zhong, W. Li, C. Wang, J. Yu, and R. Xu, “Determining Optimal Inspection Intervals in Maintenance Considering Equipment Aging Failures,” IEEE Transactions on Power Systems, Vol. 32, No. 2, pp. 1474-1482, March 2017.
    [12] Y. Yumbe, T. Hasegawa, and N. Furukawa, “Optimal Method for Inspection Scheduling of Power Distribution Facilities,” IEEE Transactions on Power Delivery, Vol. 28, No. 3, pp. 1558-1565, July 2013.
    [13] 「配電技術手冊(十四)地下配電線路維護」,台灣電力公司業務處,102年10月。
    [14] D. R. Doan, “Prioritizing Circuit Breaker and Protective Relay Maintenance Using an Arc Flash Hazard Assessment,” IEEE Transactions on Industry Application, Vol. 49, No. 2, pp. 799-802, March 2013.
    [15] P. Dehghanian, M. Kezunovic, G. Gurrala and Y. Guan, “Security-Based Circuit Breaker Maintenance Management,” 2013 IEEE Power & Energy Society General Meeting, Vancouver, Canada, pp. 1-5, July 2013.
    [16] J. Zhong, W. Li, C. Wang, and J. Yu “A RankBoost-Based Data-Driven Method to Determine Maintenance Priority of Circuit Breaker,” IEEE Transactions on Power Delivery, Vol. 33, No. 3, pp. 1044-1053, June 2018.
    [17] H. Mirsaeedi, A. Fereidunian, S. M. Mohammadi-Hosseininejad, P. Dehghanian, and H. Lesani “Long-Term Maintenance Scheduling and Budgeting in Electricity Distribution Systems Equipped With Automatic Switches,” IEEE Transactions on Industrial Informatics, Vol. 14, No. 5, pp. 1909-1919, May 2018.
    [18] H. Mirsaeedi, A. Fereidunian, S. M. Mohammadi-Hosseininejad, and H. Lesani “Electricity Distribution System Maintenance Budgeting: A Reliability-Centered Approach,” IEEE Transactions on Power Delivery, Vol. 33, No. 4, pp. 1599-1610, August 2018.
    [19] M. Abbasghorbani and H. R. Mashhadi, “Circuit Breakers Maintenance Planning for Composite Power Systems,” IET Generation, Transmission & Distribution, Vol. 7, No. 10, pp. 1135-1143, October 2013.
    [20] A. Koksal and A. Ozdemir, “RCAM Based Asset Management Study for Turkish National Power Transmission System: Verification Stage,” 2016 IEEE International Conference on Sustainable Energy Technologies, Hanoi, Vietnam, pp. 169-173, January 2016.
    [21] P. Dehghanian and M. Kezunovic, “Cost/Benefit Analysis for Circuit Breaker Maintenance Planning and Scheduling,” 2013 North American Power Symposium, Manhattan, USA, pp. 1-6, December 2013.
    [22] A. Arif, S. Ma, Z. Wang, J. Wang, S. M. Ryan, and C. Chen “Optimizing Service Restoration in Distribution Systems with Uncertain Repair Time and Demand,” IEEE Transactions on Power Systems, Vol. 33, No. 6, pp. 6828-6838, November 2018.
    [23] F. Yang, M. K. Chung, and C. S. Chang “Multi-objective Evolutionary Optimization of Substation Maintenance Using Decision-Varying Markov Model,” IEEE Transactions on Power Systems, Vol. 23, No. 3, pp. 1328-1335, August 2008.
    [24] F. Yang and C. S. Chang, “Optimisation of Maintenance Schedules and Extents for Composite Power Systems Using Multi-Objective Evolutionary Algorithm,” IET Generation, Transmission & Distribution, Vol. 3, No. 10, pp. 930-940, October 2009.
    [25] G. Li and D. Shi, “Risk-Based Maintenance Schedule of Transmission Line Using Multi-Objective Evolutionary Algorithm,” 2011 IEEE Power Engineering and Automation Conference, Wuhan, China, pp. 413-416, January 2011.
    [26] J. A. Rodríguez, M. F. Anjos, P. Côté, and G. Desaulniers, “MILP Formulations for Generator Maintenance Scheduling in Hydropower Systems,” IEEE Transactions on Power Systems, Vol. 33, No. 6, pp. 6171-6180, November 2018.
    [27] A. Helseth, M. Fodstad, and B. Mo, “Optimal Hydropower Maintenance Scheduling in Liberalized Markets,” IEEE Transactions on Power Systems, Vol. 33, No. 6, pp. 6989-6998, November 2018.
    [28] O. Sadeghian, A. Oshnoei, S. Nikkhah, and B. Mohammadi-Ivatloo, “Multi-Objective Optimisation of Generation Maintenance Scheduling in Restructured Power Systems Based on Global Criterion Method,” IET Smart Grid, Vol. 2, No. 2, pp. 203-213, June 2019.
    [29] N. L. Dehghani, Y. M. Darestani, and A. Shafieezadeh, “Optimal Life-Cycle Resilience Enhancement of Aging Power Distribution Systems: A MINLP-Based Preventive Maintenance Planning,” IEEE Access, Vol. 8, pp. 22324-22334, January 2020.
    [30] H. Qingtian, C. Wenjing, and S. Tao, “Maintenance Route Planning Based on Particle Swarm Optimization Algorithm,” 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, pp. 195-198, April 2012.
    [31] P. Afzail and F. Keynia, “Lifetime Efficiency Index Model for Optimal Maintenance of Power Substation Equipment Based on Cuckoo Optimisation Algorithm,” IET Generation, Transmission & Distribution, Vol. 11, No. 11, pp. 2787-2795, September 2017.
    [32] S. Lakshminarayanan and D. Kuar, “Optimal Maintenance Scheduling of Generator Units Using Discrete Integer Cuckoo Search Optimization Algorithm,” Swarm and Evolutionary Computation, Vol. 42, pp. 89-98, October 2018.
    [33] P. C. Chiu, S. J. Huang, W. F. Su, K. T. Wu, and C. J. Hsu, “An Intelligent Maintenance Scheduling of Distribution Transformers in A Smart Grid,” 2017 IEEE 6th Global Conference on Consumer Electronics, Nagoya, Japan, pp. 1-2, October 2017.
    [34] E. Umamaheswari, S. Ganesan, M. Abirami, and S. Subramanian, “Cost Effective Integrated Maintenance Scheduling in Power Systems using Ant Lion Optimizer,” Energy Procedia, Vol. 117, pp. 501-508, June 2017.
    [35] G. Dhiman and V. Kumar, “Emperor Penguin Optimizer: A Bio-Inspired Algorithm for Engineering Problems,” Knowledge-Based Systems, Vol. 159, pp. 20-50, June 2018.
    [36] S. K. baliarsingh, W. Ding, S. Vipsita, and S. Bakshi, “A Memetic Algorithm Using Emperor Penguin and Social Engineering Optimization for Medical Data Classification,” Applied Soft Computing, Vol. 85, pp. 105773-105787, September 2019.
    [37] H. Jia, K. Sun, W. Song, X. Peng, C. Lang, and Y. Li, “Multi-Strategy Emperor Penguin Optimizer for RGB Histogram-Based Color Satellite Image Segmentation Using Masi Entropy,” IEEE Access, Vol. 7, pp. 134448-134474, September 2019.
    [38] 「配電設備維護準則研究與分析」台灣電力公司97年度研究計畫,97年11月。
    [39] 「配電技術資料(二)地下配電器材」,台灣電力公司業務處,102年10月。
    [40] J. R. White and R. Widup, “Factors to Consider When Determining Maintenance Intervals,” IEEE Transactions on Industry Application, Vol. 50, No. 1, pp. 188-194, February 2014.
    [41] American National Standard, “Standard for Maintenance Testing Specifications for Electrical Power Distribution Equipment and Systems,” ANSI/NETA MTS-2011.
    [42] L. Belak, R. Marusa, R. Ferlic, and J. Pihler, “Strategic Maintenance of 400-kV Switching Substations,” IEEE Transactions on Power Delivery, Vol. 28, No. 1, pp. 394-401, January 2013.
    [43] G. A. Klutke, P. C. Kiessler, and M. A. Wortman, “A Critical Look at the Bathtub Curve,” IEEE Transactions on Reliability, Vol. 52, No. 1, pp. 125-129, March 2003.
    [44] B. Retterath, S. S. Venkata, and A. A. Chowdhury, “Impact of Time-Varying Failure Rates on Distribution Reliability,” International Journal of Electrical Power & Energy Systems, Vol. 27, pp. 682-688, December 2005.
    [45] C. Suwanasri, S. Lipirodjanapong, T. Suwanasri, and W. Wangdee, “Failure Rate Analysis of Circuit Breaker and Its Preventive Maintenance Application,” 2014 International Conference on Probabilistic Methods Applied to Power Systems, Durham, UK, pp. 1-6, November 2014.
    [46] J. B. Ali, B. C. Morello, L. Saidi, and F. Fnaiech, “Accurate Bearing Remaining Useful Life Prediction Based on Weibull Distribution and Artificial Neural Network,” Mechanical Systems and Signal Processing, Vol. 56-57, pp.150-172, May 2015.
    [47] S. K. E. Awedallah, J. V. Milanovic, and P. N. Jarman, “The Influence of Modeling Transformer Age Related Failures on System Reliability,” IEEE Transactions on Power Systems, Vol. 30, No. 2, pp. 970-979, March 2015.
    [48] R. N. Allan, R. Billinton, I. Sjarief, L. Goel, and K. S. So, “A Reliability Test System for Educational Purposes-Basic Distribution System Data and Results,” IEEE Transactions on Power Systems, Vol. 6, No. 2, pp. 813-820, May 1991.
    [49] R. Billinton and S. Jonnavithula, “A Test System for Teaching Overall Power System Reliability Assessment,” IEEE Transactions on Power Systems, Vol. 11, No. 4, pp. 1670-1676, November 1996.
    [50] J. J. Burke, “Power Distribution Engineering: Fundamentals and Application,” Taylor & Francis Group, USA, 1994.
    [51] S. K. Abeygunawardane and P. Jirutitijaroen, “New State Diagrams for Probabilistic Maintenance Models,” IEEE Transactions on Power Systems, Vol. 26, No. 4, pp. 2207-2213, November 2011.
    [52] Y. Yare, G. K. Venayagamoorthy, and U. O. Aliyu, “Optimal generator maintenance scheduling using a modified discrete PSO,” IET Generation, Transmission & Distribution, Vol. 2, No. 6, pp. 834-846, November 2008.
    [53] H. A. Aldhubaib and M. M. A. Salama, “A Novel Approach to Investigate the Effect of Maintenance on the Replacement Time for Transformers,” IEEE Transactions on Power Delivery, Vol. 29, No. 4, pp. 1603-1612, August 2014.
    [54] C. S. Chen, C. H. Lin, H. J. Chuang, C. S. Li, M. Y. Huang, and C. W. Huang, “Optimal Placement of Line Switches for Distribution Automation Systems Using Immune Algorithm,” IEEE Transactions on Power Systems, Vol. 21, No. 3, pp. 1209-1217, August 2006.
    [55] A. El-Bassiouny, M. El-Shimy, and R. Hammouda, “Impact of Power Transformer Failures on Customer Interruptions Costs Using Customer Damage Functions,” 2017 Nineteenth International Middle East Power Systems Conference, Cairo, Egypt, pp. 565-570, February 2017.

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE