簡易檢索 / 詳目顯示

研究生: 陳永發
Chen, Yong-Fa
論文名稱: 操作於2.65MHz之複金屬燈自激式全橋電子安定器的分析與設計
Analysis and Design of Self-Oscillating Full-Bridge Electronic Ballast for Metal Halide Lamp at 2.65MHz Operating Frequency
指導教授: 林瑞禮
Lin, Ray-Lee
李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 87
中文關鍵詞: 複金屬燈電子安定器2.65MHz自激式全橋定電流無燈管保護
外文關鍵詞: metal halide lamp, electronic ballast, 2.65MHz, self-oscillating, full-bridge, constant-lamp-current, no-lamp protection
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一操作於2.65MHz之複金屬燈自激式全橋電子安定器的分析與設計。為了避免複金屬燈發生音頻共振的現象並符合EMI規範,將自激式全橋電子安定器之操作頻率定於2.65MHz。然而,當安定器操作於高頻時,功率開關(MOSFET)之閘極與源極間寄生電容Cgs對開關閘極驅動電路操作頻率的影響不可忽略。因此,在考量功率開關(MOSFET)之閘極與源極間寄生電容Cgs之條件下,本論文提出一開關閘極驅動電路之設計公式,使安定器能夠達到所需之操作頻率。
    最後,本論文將設計並完成一個操作於2.65MHz的35W具定電流控制與無燈管保護電路之自激式全橋電子安定器。藉由SIMPLIS®模擬電路與實作電路之結果,驗證功率開關(MOSFET)之閘極與源極間寄生電容Cgs對開關閘極驅動電路操作頻率的影響,及所提出之設計公式和設計準則。

    This thesis presents the analysis and design of the self-oscillating full-bridge electronic ballast for the metal halide lamp at 2.65MHz operating frequency. In order to avoid the acoustic-resonance problem of the metal halide lamp and meet the EMI limitation by IEC regulation, the self-oscillating full-bridge electronic ballast is operated at 2.65MHz radio-frequency (RF). However, the effect caused by the gate-to-source capacitor Cgs of the MOSFETs on the self-oscillating gate-drive network becomes significant to influence the design of the operating frequency at RF. Therefore, the gate-to-source capacitor Cgs of the MOSFETs is considered to derive the design equation of the magnetizing inductor for the current transformer in the self-oscillating gate-drive network.
    Finally, based on the prototype circuit of a 35W self-oscillating full-bridge electronic ballast with constant-lamp-current control and no-lamp-protection scheme at 2.65MHz operating frequency, the SIMPLIS® simulation and experimental results are used to validate the effect from gate-to-source capacitor Cgs, the proposed design equation, and the design criteria.

    Chapter 1. INTRODUCTION 1 1.1. Background 1 1.2. Motivation 4 1.3. Outline of the Thesis 5 Chapter 2. ANALYSIS OF SELF-OSCILLATING FULL-BRIDGE ELECTRONIC BALLAST WITH CONSTANT-LAMP-CURRENT CONTROL AND NO-LAMP PROTECTION SCHEME 6 2.1. Introduction 6 2.2. Resonant Tank 8 2.3. Self-Oscillating Gate-Drive Network 10 2.3.1. Self-Oscillating Gate-Drive Network without Gate-to-Source Capacitor 11 2.3.2. Self-Oscillating Gate-Drive Network with Gate-to-Source Capacitor 17 2.4. Constant-Lamp-Current Control Network 27 2.5. No-Lamp Protection Scheme 34 2.6. Summary 36 Chapter 3. DESIGN OF EMPLOYED ELECTRONIC BALLAST 37 3.1. Introduction 37 3.2. Resonant Tank 39 3.3. Self-Oscillating Gate-Drive Network 42 I. Gate-Drive Network without Considering the Gate-to-Source Capacitor 42 II. Gate-Drive Network Including Gate-to-Source Capacitor 46 3.4. Constant-Lamp-Current Control Network 48 3.5. No-Lamp-Protection Scheme 56 3.6. Summary 62 Chapter 4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 63 4.1. Introduction 63 4.2. Implementation of Employed 2.65MHz Electronic Ballast 63 4.3. Experimental Results 66 4.4. Summary 71 Chapter 5. CONCLUSIONS AND FUTURE WORKS 72 REFERENCES 74 APPENDIX A. SIMPLIS® SIMULATION SCHEMATIC 78 APPENDIX B. MATHCAD® EQUATION DERIVATION. 79 APPENDIX C. PHOTO OF PROTOTYPE CIRCUIT. 85 APPENDIX D. MEASURED EFFICIENCY OF PROTOTYPE CIRCUIT. 86 VITA. 87

    [1] C. S. Moo, S. Y. Tang, C. R. Lee, J. H. Chen, and W. T. Tsai, “Investigation into high-frequency operating characteristics of metal-halide lamps,” IEEE Trans. Power Electron., vol. 37, no. 11, pp. 2234-2240, Nov. 2009.
    [2] M. A. Dalla Costa, J. M. Alonso, J. C. Miranda, J. Garcia, and D. G. Lamar, “A single-stage high-power-factor electronic ballast based on integrated buck flyback converter to supply metal halide lamps,” IEEE Trans. Power Electron., vol. 55, no. 3, pp. 1112-1122, March 2008.
    [3] D. H. J. Van Casteren, M. A. M. Hendrix, and J. L. Duarte, “Control HID lamp-ballast interaction for low-frequency square-wave drivers,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 780-788, May 2007.
    [4] T. J. Liang, C. M. Huang, and J. F. Chen, “Two-stage high-power-factor electronic ballast for metal-halide lamps,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2959-2966, Dec. 2009.
    [5] R. L. Lin and Z. Q. Wang, “2.65MHz self-oscillating electronic ballast with constant-lamp-current control for metal halide lamp,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 839-844, May 2007.
    [6] R. L. Lin and Z. Q. Wang, “2.65MHz self-oscillating complementary electronic ballast with constant-lamp-current control for metal halide lamp,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2097-2105, Nov. 2007.
    [7] J. Garcia-Garcia, J. Cardesin, J. Ribas, A. J. Calleja, E. L. Corominas, M. Rico-Secades, and J. M. Alonso, “New control strategy in a square-wave inverter for low wattage metal halide lamp supply to avoid acoustic resonances,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 243-253, Jan. 2006.
    [8] F. F. Tao, Q. Zhao, F. C. Lee and N. Onishi, “Self-oscillating electronic ballast with dimming control,” in Proc. IEEE Power Electronics Spec. Conf., 2001, vol. 4, pp. 1818-1823.
    [9] J. Ribas, J. M. Alonso, A. J. Calleja, E. L. Corominus, J. Cardesin and M. R. Secades, “A new discharge lamp ballast based on a self-oscillating full-bridge inverter integrated with a buck-type PFC circuit,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2001, vol. 2, pp. 688-694.
    [10] R. L. Lin, J. P. Cheng, and F. Y. Chen, “Self-oscillating full-bridge electronic ballast with constant-lamp-current control and no-lamp-protection circuit,” in Conf. Rec. IEEE-IAS Annu. Meeting, Oct. 5-9, 2008, pp. 1-7.
    [11] C. Chang, J. Chang, and G. W. Bruning, “Analysis of the self-oscillating series resonant inverter for electronic ballasts,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 533-540, May 1999.
    [12] R. N. do Prado, A. R. Seidel, and F. E. Bisogno, “A design methodology for a self-oscillating electronic ballast,” IEEE Trans. Power Electron., vol. 43, no. 6, pp. 1524-1533, Nov.-Dec. 2007.
    [13] S. S. M. Chan, H. S. H. Chung, and S. Y. Hui, “Design and analysis of an IC-less self-oscillating series resonant inverter for dimmable electronic ballasts,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1450-1458, Nov. 2005.
    [14] L. R. Nerone, “A mathematical model of the class D converter for compact fluorescent ballasts,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 708-715, Nov. 1995.
    [15] C. Chang and G. W. Bruning, “Self-oscillating electronic ballast analysis using the relay systems approach,” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 255-261, Jan./Feb. 2001.
    [16] M. Ponce-Silva, R. Mateos, E. Flores, D. Balderrama, and A. Claudio, “Driver for 2.5 MHz self-oscillating electronic ballast designed with descriptive function,” in Proc. IEEE Power Electronics Specialists Conf., 2008, pp. 2857-2860.
    [17] C. Y. Lin, Design and analysis of piezoelectric transformer converters, Ph.D. dissertation, Virginia Tech, Blacksburg, 1997.
    [18] R. L. Lin, and Y. D. Lee, “Constant power control based self-oscillating electronic ballast,” in Proc. IEEE Appl. Power Electronics Conf. and Expo., March 2005, vol. 1, pp. 589-595.
    [19] L. R. Nerone, “Power regulation circuit for high frequency electronic ballast for ceramic metal halide lamp,” US Patent No 6,479,949, Nov. 12, 2002.
    [20] A. R. Seidel, F. E. Bisogno, H. Pinheiro and R. N. Prado, “Self-oscillating dimmable electronic ballast,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1267-1274, Dec. 2003.
    [21] N. Tadic, and D. Govovic, “A voltage-controlled resistor in CMOS technology using bisection of the voltage range,” IEEE Trans. Instrumentation and Measurement, vol. 50, no. 6, pp. 1704-1710, Dec. 2001.
    [22] T. A. Smith, S. Dimitrijev, and H. B. Harrison, “Controlling a DC-DC converter by using the power MOSFET as a voltage controlled resistor,” IEEE Trans. Circuits and Syst. I, vol. 47, no. 3, pp. 357-362, Mar 2000.
    [23] L. R. Nerone, “High frequency electronic ballast for ceramic metal halide lamp,” US Patent No 6,404,140, Jun. 11, 2002.
    [24] Y. S. Youn and G. H. Cho, “Regenerative signal amplifying gate driver of self-excited electronic ballast for high pressure sodium (HPS) lamp,” in Proc. IEEE Power Electronics Specialists Conf., 1996, vol. 2, pp. 993-998.
    [25] Intersil Corporation, “N-channel power MOSFETs,” IRFR214 datasheet, July 1999.
    [26] ST Microelectronics, “N-channel enhancement mode powerMESHTM MOSFET,” STP10NB20, Nov. 1997.

    下載圖示 校內:2015-06-25公開
    校外:2015-06-25公開
    QR CODE