| 研究生: |
陳永發 Chen, Yong-Fa |
|---|---|
| 論文名稱: |
操作於2.65MHz之複金屬燈自激式全橋電子安定器的分析與設計 Analysis and Design of Self-Oscillating Full-Bridge Electronic Ballast for Metal Halide Lamp at 2.65MHz Operating Frequency |
| 指導教授: |
林瑞禮
Lin, Ray-Lee 李嘉猷 Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 複金屬燈 、電子安定器 、2.65MHz 、自激式 、全橋 、定電流 、無燈管保護 |
| 外文關鍵詞: | metal halide lamp, electronic ballast, 2.65MHz, self-oscillating, full-bridge, constant-lamp-current, no-lamp protection |
| 相關次數: | 點閱:129 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一操作於2.65MHz之複金屬燈自激式全橋電子安定器的分析與設計。為了避免複金屬燈發生音頻共振的現象並符合EMI規範,將自激式全橋電子安定器之操作頻率定於2.65MHz。然而,當安定器操作於高頻時,功率開關(MOSFET)之閘極與源極間寄生電容Cgs對開關閘極驅動電路操作頻率的影響不可忽略。因此,在考量功率開關(MOSFET)之閘極與源極間寄生電容Cgs之條件下,本論文提出一開關閘極驅動電路之設計公式,使安定器能夠達到所需之操作頻率。
最後,本論文將設計並完成一個操作於2.65MHz的35W具定電流控制與無燈管保護電路之自激式全橋電子安定器。藉由SIMPLIS®模擬電路與實作電路之結果,驗證功率開關(MOSFET)之閘極與源極間寄生電容Cgs對開關閘極驅動電路操作頻率的影響,及所提出之設計公式和設計準則。
This thesis presents the analysis and design of the self-oscillating full-bridge electronic ballast for the metal halide lamp at 2.65MHz operating frequency. In order to avoid the acoustic-resonance problem of the metal halide lamp and meet the EMI limitation by IEC regulation, the self-oscillating full-bridge electronic ballast is operated at 2.65MHz radio-frequency (RF). However, the effect caused by the gate-to-source capacitor Cgs of the MOSFETs on the self-oscillating gate-drive network becomes significant to influence the design of the operating frequency at RF. Therefore, the gate-to-source capacitor Cgs of the MOSFETs is considered to derive the design equation of the magnetizing inductor for the current transformer in the self-oscillating gate-drive network.
Finally, based on the prototype circuit of a 35W self-oscillating full-bridge electronic ballast with constant-lamp-current control and no-lamp-protection scheme at 2.65MHz operating frequency, the SIMPLIS® simulation and experimental results are used to validate the effect from gate-to-source capacitor Cgs, the proposed design equation, and the design criteria.
[1] C. S. Moo, S. Y. Tang, C. R. Lee, J. H. Chen, and W. T. Tsai, “Investigation into high-frequency operating characteristics of metal-halide lamps,” IEEE Trans. Power Electron., vol. 37, no. 11, pp. 2234-2240, Nov. 2009.
[2] M. A. Dalla Costa, J. M. Alonso, J. C. Miranda, J. Garcia, and D. G. Lamar, “A single-stage high-power-factor electronic ballast based on integrated buck flyback converter to supply metal halide lamps,” IEEE Trans. Power Electron., vol. 55, no. 3, pp. 1112-1122, March 2008.
[3] D. H. J. Van Casteren, M. A. M. Hendrix, and J. L. Duarte, “Control HID lamp-ballast interaction for low-frequency square-wave drivers,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 780-788, May 2007.
[4] T. J. Liang, C. M. Huang, and J. F. Chen, “Two-stage high-power-factor electronic ballast for metal-halide lamps,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2959-2966, Dec. 2009.
[5] R. L. Lin and Z. Q. Wang, “2.65MHz self-oscillating electronic ballast with constant-lamp-current control for metal halide lamp,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 839-844, May 2007.
[6] R. L. Lin and Z. Q. Wang, “2.65MHz self-oscillating complementary electronic ballast with constant-lamp-current control for metal halide lamp,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2097-2105, Nov. 2007.
[7] J. Garcia-Garcia, J. Cardesin, J. Ribas, A. J. Calleja, E. L. Corominas, M. Rico-Secades, and J. M. Alonso, “New control strategy in a square-wave inverter for low wattage metal halide lamp supply to avoid acoustic resonances,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 243-253, Jan. 2006.
[8] F. F. Tao, Q. Zhao, F. C. Lee and N. Onishi, “Self-oscillating electronic ballast with dimming control,” in Proc. IEEE Power Electronics Spec. Conf., 2001, vol. 4, pp. 1818-1823.
[9] J. Ribas, J. M. Alonso, A. J. Calleja, E. L. Corominus, J. Cardesin and M. R. Secades, “A new discharge lamp ballast based on a self-oscillating full-bridge inverter integrated with a buck-type PFC circuit,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2001, vol. 2, pp. 688-694.
[10] R. L. Lin, J. P. Cheng, and F. Y. Chen, “Self-oscillating full-bridge electronic ballast with constant-lamp-current control and no-lamp-protection circuit,” in Conf. Rec. IEEE-IAS Annu. Meeting, Oct. 5-9, 2008, pp. 1-7.
[11] C. Chang, J. Chang, and G. W. Bruning, “Analysis of the self-oscillating series resonant inverter for electronic ballasts,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 533-540, May 1999.
[12] R. N. do Prado, A. R. Seidel, and F. E. Bisogno, “A design methodology for a self-oscillating electronic ballast,” IEEE Trans. Power Electron., vol. 43, no. 6, pp. 1524-1533, Nov.-Dec. 2007.
[13] S. S. M. Chan, H. S. H. Chung, and S. Y. Hui, “Design and analysis of an IC-less self-oscillating series resonant inverter for dimmable electronic ballasts,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1450-1458, Nov. 2005.
[14] L. R. Nerone, “A mathematical model of the class D converter for compact fluorescent ballasts,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 708-715, Nov. 1995.
[15] C. Chang and G. W. Bruning, “Self-oscillating electronic ballast analysis using the relay systems approach,” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 255-261, Jan./Feb. 2001.
[16] M. Ponce-Silva, R. Mateos, E. Flores, D. Balderrama, and A. Claudio, “Driver for 2.5 MHz self-oscillating electronic ballast designed with descriptive function,” in Proc. IEEE Power Electronics Specialists Conf., 2008, pp. 2857-2860.
[17] C. Y. Lin, Design and analysis of piezoelectric transformer converters, Ph.D. dissertation, Virginia Tech, Blacksburg, 1997.
[18] R. L. Lin, and Y. D. Lee, “Constant power control based self-oscillating electronic ballast,” in Proc. IEEE Appl. Power Electronics Conf. and Expo., March 2005, vol. 1, pp. 589-595.
[19] L. R. Nerone, “Power regulation circuit for high frequency electronic ballast for ceramic metal halide lamp,” US Patent No 6,479,949, Nov. 12, 2002.
[20] A. R. Seidel, F. E. Bisogno, H. Pinheiro and R. N. Prado, “Self-oscillating dimmable electronic ballast,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1267-1274, Dec. 2003.
[21] N. Tadic, and D. Govovic, “A voltage-controlled resistor in CMOS technology using bisection of the voltage range,” IEEE Trans. Instrumentation and Measurement, vol. 50, no. 6, pp. 1704-1710, Dec. 2001.
[22] T. A. Smith, S. Dimitrijev, and H. B. Harrison, “Controlling a DC-DC converter by using the power MOSFET as a voltage controlled resistor,” IEEE Trans. Circuits and Syst. I, vol. 47, no. 3, pp. 357-362, Mar 2000.
[23] L. R. Nerone, “High frequency electronic ballast for ceramic metal halide lamp,” US Patent No 6,404,140, Jun. 11, 2002.
[24] Y. S. Youn and G. H. Cho, “Regenerative signal amplifying gate driver of self-excited electronic ballast for high pressure sodium (HPS) lamp,” in Proc. IEEE Power Electronics Specialists Conf., 1996, vol. 2, pp. 993-998.
[25] Intersil Corporation, “N-channel power MOSFETs,” IRFR214 datasheet, July 1999.
[26] ST Microelectronics, “N-channel enhancement mode powerMESHTM MOSFET,” STP10NB20, Nov. 1997.