| 研究生: |
徐瑞隆 Shyu, Juei-Lung |
|---|---|
| 論文名稱: |
多重隨機脈波寬度調變換流器 Multi-Random Pulse-Width Modulated Inverters |
| 指導教授: |
陳建富
Chen, Jiann-Fuh 梁從主 Liang, Tsorng-Juu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 換流器 、脈波寬度調變 |
| 外文關鍵詞: | Inverter, PWM |
| 相關次數: | 點閱:93 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對多重隨機脈波寬度調變換流器技術,做分析、設計及其應用。文中首先介紹多重隨機脈波寬度調變換流器之工作原理及實際設計方法,以瞭解多重隨機脈波寬度調變換流器之基本特性。接著利用傅立葉轉換結合隨機機率函數觀念推導多重隨機脈波寬度調變換流器之數學模型。除了分析計算多重隨機脈波寬度調變換流器之諧波分佈,文中並對所提多重隨機脈波寬度調變技術,以數位信號處理器(DSP)為控制器加以實現。由電腦模擬與實驗結果驗證各種隨機脈波寬度調變技術之功率頻譜密度,皆能符合預期頻譜功率能量分散特性,證實本文方法的可行性。另外,考慮多重隨機脈波寬度調變技術應用於不斷電系統噪音改善,本文並以數位信號處理器實際製作一全數位化單相全橋式換流器,文中除了介紹數位式雙迴路控制架構並詳述如何以DSP來實現系統之控制流程,同時探討於非線性負載時之輸出電壓動態響應與諧波頻譜等特性。由實驗結果驗證閉迴路多重隨機脈波寬度調變換流器具有電壓調整功能同時還有良好頻譜分散特性,可有效抑制尖銳噪音之產生。
The subject of this dissertation is primarily related to the research of the Multi-Random Pulse-Width Modulation (MRPWM) technique operated with fixed switching frequency and its application to uninterruptible power supplies (UPS) for acoustic noise reduction. Initially, the operating principle and design of the multi-random pulse-width modulation technique for the inverter system is introduced. Then the analyses of the Power Spectrum Density (PSD) for various versions of Random Pulse-Width Modulation (RPWM) techniques are presented. The generalized theoretical analysis presented within this dissertation provides an insight into the PSD for various RPWM techniques. Theoretical predictions and the measured results of the proposed MRPWM scheme are presented to demonstrate the feasibility of the proposed scheme.
In addition, as a result of the practical application in a modern UPS system, the MRPWM scheme with fixed switching frequency is applied to a digitally-controlled inverter operated to regulate the output voltage with low total harmonic distortion and reduce undesirable acoustic noise. A prototype based on a DSP controller has been built to verify the performance of the closed-loop control method and feasibility of the proposed MRPWM method for acoustic noise reduction. Both simulated and experimental results confirm that the MRPWM method has better spectrum performance over the conventional Single Random Pulse-Width Modulation (SRPWM) scheme.
[1] S. R. Bowes and R. R. Clement, “Computer aided design of PWM inverter systems,” IEE, Electrical Power Application, Proceedings-B, vol. 129, no. 1, pp. 1-17, 1982.
[2] J. Holtz, “Pulsewidth modulation – A survey,” IEEE Trans. on Industrial Electronics, vol. 39, no. 5, pp. 410-420, 1992.
[3] M, Boost and P. D. Ziogas, “State of the art PWM techniques; A critical evaluation,” IEEE Trans. on Industry Applications, vol. 24, no. 2, pp. 271-280, 1988.
[4] H. W Van Der Broeck, H, Skudelny and G. V. Stanke, “Analysis and realization of a pulsewidth modulator based on voltage space vector,” IEEE Trans. on Industry Applications, vol. 24, no. 1, pp. 142-150, 1998.
[5] A. K. Wallace, R. Spee, and L. G. Martin, “Current harmonics and acoustic noise in AC adjustable speed drives,” IEEE Industry Applications Society Annual Meeting, pp. 483-488, 1988.
[6] D. H. Cho and K. J. Kim, “Modeling of electromagnetic excitation forces of small induction motor for vibration and noise analysis,” IEE Proceedings-Electric Power Applications, vol. 145, no. 3, pp. 199-205, 1998.
[7] R. Belmans, D. Verdyck, W. Geysen, and R. D. Findlay, “Electro-mechanical analysis of the audible noise of an inverter-fed squirrel-cage induction motor,” IEEE Trans. on Industry Applications, vol. 27, no. 3, pp. 539-544, 1991.
[8] R. Yacamini and S. C. Chang, “Noise and vibration from induction machines fed from harmonic sources,” IEEE Trans. on Energy Conversion, vol. 10, no. 2, pp. 286-292, 1995.
[9] T. Novak and S. J. Vitton, “A case study of acoustics and vibration of mine fans,” IEEE Trans. on Industry Applications, vol. 31, no. 6, pp. 1323-1333, 1995.
[10] D. H. Cho, and K. J Kim, “Modeling of electromagnetic excitation forces of small induction motor for vibration and noise analysis,” IEE Proceedings-Electric Power Applications, vol. 145, no. 3, pp. 199-205, 1998.
[11] W. Erdman, R. Hudson, J. Yang, and R. G. Hoft, “A 7.5 kW ultrasonic inverter motor drive employing MOS-controlled thyristors,” IEEE Industry Applications Society Annual Meeting, pp. 848-854, 1989.
[12] S. Legowski and A. M. Trzynadlowski, “Power-MOSFET, hypersonic inverter with high-quality output current,” IEEE Applied Power Electronics Conference, APEC '90, pp. 3-7, 1990.
[13] S. Garcia-Otero and M. Devaney, “Minimization of acoustic noise in variable speed induction motors using a modified PWM drive,” IEEE Trans. on Industry Applications, vol. 30, no. 1, pp. 111-115, 1994.
[14] S. Legowski and A. M. Trzynadlowski, “Hypersonic MOSFET-based power inverter with random pulse width modulation,” IEEE Industry Applications Society Annual Meeting, pp. 901-903, 1989.
[15] S. Legowski and A. M. Trzynadlowski, “Advanced random pulse width modulation technique for voltage-controlled inverter drive systems,” IEEE Applied Power Electronics Conference, APEC '91, pp. 100-106, 1991.
[16] T. Tanaka, T. Ninomiya, and K. Harada, “Random-switching control in DC-to-DC converters,” Power Electronics Specialists Conference, PESC '89, pp. 500-507, 1989.
[17] S. Y. R. Hui, I. Oppermann, and S. Sathiakumar, “Microprocessor-Based Random PWM Schemes for DC-AC Power Conversion,” IEEE Trans. on Power Electronics, vol. 12, no2, pp. 253-260, 1997.
[18] F. Blaabjerg, J. K. Pedersen, and P. Thoegersen, “Improved modulation techniques for PWM-VSI drives,” IEEE Trans. on Industrial Electronics, vol. 44, no. 1, pp. 87-95, 1997.
[19] A. M. Tzynadlowski, R. L. Kirlin, and S. Legowski, “Space vector PWM technique with minimum switching loss and variable pulse rate,” IEEE IECON’93, pp. 689-694, 1993.
[20] J. K. Pedersen and F. Blaabjerg, “Implementation and test of a digital quasi-random modulated SFAVM PWM in a high performance drive system,” IEEE IECON’ 92, pp. 265-270, 1992.
[21] J. T. Boys and P. G. Handley, “Spread spectrum switching-low noise modulation technique for PWM inverter drives,” IEE Proceedings–Electric Power Applications, Pt. B, vol. 139, no. 3, pp. 252-260, 1992.
[22] C. B. Jacobin, A. M. N. Lima, Da Silva, and A. M. Tzynadlowski, “ Current control for induction motor drives using random PWM,” IEEE Trans. on Industrial Electronics, vol. 45, no. 5, pp. 87-95, 1998.
[23] T. G. Habetler and D. M. Divan, “Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier,” IEEE Trans. on Power Electronics, vol. 6, no. 3, pp. 356-363, 1991.
[24] A. M. Trzynadlowski, M. M. Bech, F. Blaabjerg, J. K. Pedersen, and R. L. Zigliotto, “Optimization of switching frequencies in the limited-pool random space vector PWM technique for inverter-fed drives,” IEEE Applied Power Electronics Conference and Exposition, APEC '99, vol. 2, pp. 1013-10181, 1999.
[25] M. Zigliotto and A. M. Trzynadlowski, “Effective random space vector modulation for EMI reduction in low-cost PWM inverters,” Power Electronics and Variable Speed Drives, pp. 163-168, 1998.
[26] A. M Trzynadlowski, M. Zigliotto, S. Bolognani, and M. M. Bech, “Reduction of the electromagnetic interference conducted to mains in inverter-fed AC drives using random pulse width modulation,” IEEE Industry Society Annual Meeting, pp. 739-744, 1998.
[27] S. Legowski, J. Bei, and A. M. Tzynadlowski, “Analysis and implementation of a grey-noise PWM technique based on voltage space vectors,” IEEE Applied Power Electronics Conference, APEC’92, pp. 586-593, 1992.
[28] R. L. Kirlin, S. Kwok, S. Legowski and A. M. Tzynadlowski, “Power spectra of a PWM inverter with randomized pulse position,” IEEE Trans. on Power Electronics, vol. 9, no. 5 , pp. 463-472, 1994.
[29] S. Bolognani., R. Conton, and M. Zigliotto, “Experimental analysis of the EMI reduction in PWM inverters using random space vector modulation,” IEEE International Symposium on Industrial Electronics, ISIE’ 96, pp. 482-487, 1996.
[30] F. Blaabjerg and J. K. Pedersen, “Digital implemented random modulation strategies for AC and switched relutance drives,” IEEE IECON’ 94, pp. 676-682, 1994.
[31] A. M. Tzynadlowski, F. Blaabjerg, J. K. Pedersen, R. L. Kirlin, and S. Legowski, “Random pulse width modulation techniques for converter –fed drive systems-A review,” IEEE Trans. on Industry Applications, vol. 30, no. 5, pp. 1166-1175, 1994.
[32] A. M. Stankovic, G. C. Verghese, and D. J. Perreault, “Analysis and synthesis of randomized modulation schemes for power converters,” IEEE Trans. on Power Electronics, vol. 10, no. 6, pp. 680-693, 1995.
[33] M. M. Bech, F. Blaabjerg, and J. K. Pedersen, “Random modulation techniques with fixed switching frequency for three-phase power converters,” IEEE Power Electronics Specialists Conference, PESC 99, pp. 544-551, 1999.
[34] M. M. Bech, J. K. Pedersen, and A. M. Tzynadlowski, “A methodology for true comparison of analytical and measured frequency domain spectra in random PWM converters,” IEEE Trans. on Power Electronics, vol. 14, no. 3, pp. 578-576, 1999.
[35] Yash Shrivastava, S. Y. R. Hui, and S. Sathiakumar, “Noise analysis of DC-AC random PWM scheme,” IEEE Trans. on Power Electronics, vol. 14, no. 4, pp. 761-770, 1999.
[36] T. J. Liang, J. F. Chen and J. L. Shyu, “Novel Multi-Random PWM Technique for Inverter Design,” IEEE Power Electronics and Drive Systems conference, PEDS’99, vol. 2, pp. 942-946. 1999.
[37] J. L. Shyu, T. J. Liang, and J. F. Chen, “Digitally-controlled PWM inverter modulated by multi-random technique with fixed switching frequency,” IEE Proceedings-, Electrical Power Application, vol. 148, no. 1, pp. 62-68, 2001.
[38] K. P. Gokhale, A. Kawamura, and R. G. Hoft, “Dead beat microprocessor control of PWM inverter for sinusoidal output waveform synthesis” IEEE Power Electronics Specialist Conference, PESC’92, pp. 443-450, 1992.
[39] N. Rahim and J. E. Quaicoe, “A single-phase delta-modulated inverter for UPS application,” IEEE Trans. on Industrial Electronics, vol. 40, no. 3, pp. 347-354, 1993.
[40] A. Kawamura and R. G. Hoft, “Instaneous feedback controlled PWM inverter with adaptive hysteresis,” IEEE Trans. on Industrial Application, vol. 20, no. 4, pp. 769-775, 1984.
[41] N. Rahim and J. E. Quaicoe, “Analysis and design of a multiple feedback loop control strategy for a single-phase voltage-source UPS inverter,” IEEE Trans. on Power Electronics, vol. 11, no. 4, pp. 532-541, 1996.
[42] M. J. Ryan and R. D. Lorenz, “Control Topology Options for Single-Phase UPS Inverters,” IEEE Trans. on Industry Applications, vol. 33, no. 2, pp. 493-501, 1997.
[43] Y. Ito and S. Kawauchi, “Microprocessor-based robust digital control for UPS with three-phase PWM inverter,” IEEE Trans. on Power Electronics, vol. 10, no. 2, pp. 196-204, 1995.
[44] N. R. Zargari, P. D. Ziogas, and G. Joos, “A two switch high performance current regulated DC/AC conveter module,” IEEE Trans. on Industry Applications, vol. 31, no. 3, pp. 583-589, 1995.
[45] M. A. Rahman, T. S. Radwan, A. M. Osheiba and A. E. Lashine, “Analysis of current controlled for voltage-source inverter,” IEEE Trans. on Industrial Electronics, vol. 44, no. 4, pp. 477-485, 1997.
[46] I. Kubo, Y. Ozawa, R. Nakatsuka and A. Shimizu, “A fully digital controlled UPS using IGBT’s,” IEEE Industry Applications Society Annual Meeting , pp.1042-1046, 1991.
[47] S. L. Jung, M. Y. Chang, J. Y. Jyang, H. S. Huang, L. C. Yeh and Y. Y. Tzou, “Design and implementation of an FPGA based control IC for the single-phase PWM inverter used in an UPS,”IEEE Power Electronics and Drive Systems, PEDS’97 , pp.344-349, 1997.
[48] S. L. Jung and Y. Y. Tzou, “Discrete feedford sliding mode control of a PWM inverter for sinusoidal output waveform synthesis,” IEEE Power Electronics Specialists Conferences, PESC’ 94, pp. 552-559, 1994.
[49] K. Hirachi, M. Sakane, T. Matsui, A. Kajima, and M. Nakaoka, “Cost-effective practical developments of a high performance and multi-functional UPS with new system configurations and their specific control implementations”, IEEE Power Electronics Specialists Conferences, PESC’95, pp. 480-485, 1995.
[50] J. F. Chen and C. L. Chou, “Combination of voltage-controlled and current-controlled inverter for UPS parallel operation”, IEEE Trans. on Power Electronics, vol. 10, no. 5, pp. 547-558, 1995.
[51] A. von Jouanne, P. N. Enjeti, and D. J. Lucas, “DSP control of high-power UPS systems feeding nonlinear loads,” IEEE Trans. on Industrial Electronics, vol. 43, no. 1, pp.121-125, 1996.