簡易檢索 / 詳目顯示

研究生: 賴志嘉
Lai, Chih-Chia
論文名稱: 具增強型氮化鎵高電子遷移率電晶體 1 MHz DC-DC LLC 諧振轉換器之研製
Design and Implementation of 1 MHz DC-DC LLC Resonant Converter with GaN Enhancement Mode HEMT
指導教授: 鄭銘揚
Cheng, Ming-Yang
共同指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 51
中文關鍵詞: LLC諧振轉換器增強型氮化鎵高電子遷移率電晶體柔性切換數位訊號處理器
外文關鍵詞: LLC resonant converter, GaN HEMT, soft switching, digital control
相關次數: 點閱:74下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵功率晶體為寬能隙半導體元件中切換速度最快之元件,可降低功率元件的切換損失,使轉換器操作在更高的頻率,因此其相關應用已成未來趨勢。本論文使用增強型氮化鎵功率元件於1 MHz LLC半橋諧振轉換器之研製,提高操作頻率以增加功率密度。本論文先探討LLC半橋諧振轉換器柔切之動作原理,研究寬能隙元件特性,並瞭解增強型氮化鎵功率元件的特點與驅動電路設計需求。最後,以數位訊號處理器TMS320F28035作為控制核心,研製一切換頻率操作在1MHz,輸入電壓為400 V、輸出電壓為12 V,額定輸出功率為240W之直流對直流LLC諧振轉換器,二次側並使用同步整流技術以降低導通損失提高系統效率,實驗結果驗證本轉換器在半載時最高效率可達94.1%,滿載時效率可達92.1%。

    Gallium Nitride Power Transistor has the fastest switching characteristics among the wide band-gap semiconductor power devices. This feature allows the converters to reduce switching losses for operating at higher frequency. Therefore, its applications have become a recent trend. In this thesis, an 1 MHz LLC half bridge resonant converter with GaN Enhancement mode HEMT (GaN E-HEMT) is implemented. The power density of the power converter is improved with higher switching frequency, and also achieve higher efficiency with soft switching technique. The operating principle of half bridge LLC resonant converter is discussed and the characteristics and gate driver circuit requirements of the wide bandgap devices are studied. Finally, the digital signal processor, TMS320F28035, is used to realize the laboratory prototype with the input voltage 400 V, the output voltage 12 V, and rated output power 240W. The synchronous rectifier is used on the secondary side to reduce conduction loss to improve efficiency. The experimental results show that efficiency can be as high as 94.1% at 50% load and 92.1% at full load.

    Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization 4 Chapter 2 Introduction of the Resonant Converter 5 2.1 Series Resonant Converter 5 2.2 Parallel Resonant Converter 7 2.3 LLC Resonant Converter 8 Chapter 3 Analysis of Half-Bridge LLC Resonant Converter with GaN Devices 13 3.1 Operating Principle of LLC Converter with GaN Devices 13 3.2 Introduction of GaN HEMT 21 3.1.1 Gate Driver Design Considerations 24 Chapter 4 Hardware Implementation and Discussions of Experimental Results 28 4.1 Specifications and Key Components Design 28 4.1.1 Circuits Parameters Design 29 4.1.2 Design Considerations for Driving High Speed GaN E-HEMTs 38 4.2 Experimental Results and Discussions 43 Chapter 5 Conclusions and Future Works 47 5.1 Conclusions 47 5.2 Future Works 48 REFERENCES 49

    [1] A. Nakagawa, Y. Kawaguchi, and K. Nakamura, “Silicon limit electrical characteristics of power devices and Ics, ” ISPSD, pp. 26-28, 2008.
    [2] J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan,“An assessment of wide bandgap semiconductors for power devices, “ IEEE Trans. on Power Electronics, Vol. 18, No. 3, pp. 907-914, 2003.
    [3] Z. Liu, F. C. Lee, Q. Li, and R. Burgos, “Characterization and failure mode analysis of cascode GaN HEMT” Master Dissertation, Virginia Tech, May 2014.
    [4] N. Kaminski, “State of the art and future of wide band-gap devices”, Proc. EPE 2009, Barcelona, 2009
    [5] W. J. Gu and K. Harada, “A new method to regulate resonant converters,” IEEE Trans. on Power Electronics, vol. 3, no. 4, pp. 430-439, 1988.
    [6] I. Batarseh, “Resonant converter topologies with three and four energy storage elements,” IEEE Trans. on Power Electronics, vol. 9, no. 1, pp. 64-73, 1994.
    [7] A. K. S. Bhat, “Analysis optimization and design of A series-parallel resonant converter,” in Proc. IEEE APEC, pp. 155-164, 1990.
    [8] X. C. Huang, Z. Y. Liu, Q. Li, and F. C. Lee, “Evaluation and application of 600V GaN HEMT in cascode structure,” in Proc. Applied Power Electronics Conference and Exposition (APEC), 2013, pp. 1279 – 1286.
    [9] F. C. Lee, “High-frequency quasi-resonant converter technologies,” Proceedings of the IEEE, vol. 76, no. 4, pp. 377-390, 1988
    [10] K. H. Liu and F. C. Lee., “Zero-voltage switching technique in DC-DC converters,”IEEE Trans. on Industrial Electronics, vol. 5, no. 3, pp. 293-304 1986.
    [11] R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Trans. on Power Electronics, vol. 13, no. 2, pp. 174-182, 1988.
    [12] A. K. S. Bhat and M. M. Swamy, “Analysis and design of a parallel resonant converter including the effect of high-frequency transformer,” in Proc. IEEE PESC, vol. 2, pp. 768-775, 1989.
    [13] R. Oruganti and T. C. How, “Resonant-tank control of parallel resonant converter,” IEEE Trans. on Power Electronics, vol. 8, no. 2, pp. 127-134, 1993.
    [14] R. Liu and C. Q. Lee, “Analysis and design of LLC-type series resonant converter,” Electronics Letters, vol. 24, no. 24, pp. 1517-1519, 1988
    [15] O. P. Mandhana and R. G. Hoft, “Steady state frequency domain analysis of parallel-series resonant converter,” in Proc. IEEE APEC, pp. 229-236, 1992.
    [16] J. F. Lazar and R. Martinelli “Steady-state analysis of the LLC series resonant converter,” in Proc. in Proc. IEEE APEC, vol. 2, pp. 728-735, 2001.
    [17] B. Yang, “Topology investigation for front end DC/DC power conversion for distributed power system,” Ph.D. dissertation, Dept. Electrical Eng.,Virginia Tech., Blacksburg, VA, USA, ch. 4, 2003.
    [18] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC DC conversion,” in Proc. IEEE APEC, vol. 2, pp. 1108-1112, 2002.
    [19] B. J. Baliga, “ Power semiconductor device figure of merit for high-frequency applications, IEEE Electron Device Letters, Vol. 10, No. 10, pp. 455-457, 1989.
    [20] A. Lidow, J. Strydom, M. Rooij, and D. Reusch, GaN Transistors for Efficient Power Conversion, Second Edition, John Wiley & Sons, Inc
    [21] M. Okada, Y. Saitoh, M. Yokoyama, K. Nakata, S. Yaegassi, K. Katayama, M. Ueno, M. Kiyama, T. Katsuyama, and T. Nakamura, “Novel vertial heterojunction field-effect transistors with re-grown AlGaN/ GaN two-dimensional electron gas channels on GaN substrates,” Applied Physics Express, Vol. 3, p. 054201, 2010.
    [22] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, J. Applied Physics, 85, No.6, p3222-3233.
    [23] Transphorm Inc, “650V GaN FET in TO-220 (source tab) TPH3212PS, ” Datasheet, 2017.
    [24] GaN Systems Inc, “Bottom-side cooled 650 V E-mode GaN transistor GS66508P, ” Preliminary Datasheet, 2017.
    [25] GaN Systems Inc, “GN001 Application Guide Design with GaN Enhancement mode HEMT, ” Preliminary Datasheet, April 12, 2018.
    [26] B. Lu, “Investigation of high-density integrated solution for AC/DC conversion of a distributed power system,” Ph.D. dissertation, Dept. Electrical Eng., Virginia Tech., Blacksburg, VA, USA, ch. 4, 2006.
    [27] B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. Wyk, “Optimal design methodology for LLC resonant converter,” in Proc. IEEE Appl. Power Electron. Conf., 2006, pp. 533–538.
    [28] GaN Systems Inc, “Bottom-side cooled 650 V E-mode GaN transistor GS66516B, ” Preliminary Datasheet, 2017.
    [29] D. Fu, B. Lu, and F. C. Lee, “1MHz high efficiency LLC resonant converters with synchronous rectifier,” in Proc. IEEE PESC, pp. 2404-2410, 2007.
    [30] GaN Systems Inc, “GN001 Application brief how to drive GaN Enhancement mode HEMT, ” Preliminary Datasheet, April 26, 2018.

    下載圖示 校內:2023-08-29公開
    校外:2023-08-29公開
    QR CODE