| 研究生: |
蔡駿麒 Chua, Chung-Kee |
|---|---|
| 論文名稱: |
應用開放服務導航訊息認證與原子鐘增強衛星導航系統授時關鍵基礎設施的安全與韌性 Develop a Secure and Resilience of GNSS time-based Critical Infrastructure through OSNMA and CSAC |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 開放服務導航訊息認證 、原子鐘 、欺騙訊號攻擊 |
| 外文關鍵詞: | Galileo OSNMA, atomic clock, spoofing, meaconing |
| 相關次數: | 點閱:33 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技日新月異的發展,全球衛星導航系統的應用也變得越來越多元。全球衛星導航系統不僅可以用於定位技術,還可以為關鍵基礎設施提供精確的授時服務。由於衛星訊號的資料格式是開放且傳遞到地面的訊號強度非常弱所以利用軟體無線電就可以製造假的衛星訊號,從而欺騙利用衛星導航系統授時的基礎設施。為了確保基礎設施的安全授時,識別衛星訊號的真實性成為當前研究的一個重要課題。
為了開發一個安全且具有韌性的衛星導航授時服務,本論文利用開放服務導航消息認證和原子鐘提出了一個三層次的檢測系統,以排除錯誤的衛星訊號,進一步提升了衛星導航系統授時的安全性。為增強關鍵基礎設施的整體韌性,本論文還提出了在遭受攻擊後的授時方案。與現有的方法相比,本研究專為關鍵基礎設施的精確授時需求而設計,從基礎設施的視角解決現有的問題。這種檢測方法不僅在實現層面上易於執行,而且每一層的檢測可以補充其他檢測系統的不足,從而實現更加全面的檢測。
The use of Global Navigation Satellite Systems (GNSS) has become increasingly diverse following the rapid advancement of technology. GNSS can be used not only for positioning but also for precise timing services for critical infrastructure. Due to the open data format of satellite signals and the very weak signal strength transmitted to the ground, software-defined radios (SDRs) can generate fake satellite signals that may spoof infrastructure relying on GNSS. Authenticating satellite signals has become an important research area to ensure secure timing for infrastructure.
To develop a secure and resilient GNSS-based timing service, this paper proposes a three-level detection system utilizing Open Service Navigation Message Authentication (OSNMA) and atomic clock to detect false satellite signals, thereby enhancing the security of a GNSS-based timing service. Furthermore, this thesis proposes a timing solution to enhance the resilience of critical infrastructure in the event of spoofing or meaconing. In comparison with existing methods, this research is specifically designed to address the precise timing needs of critical infrastructure with regards to current issues. By using this detection system, each detection layer can complement the limitations of the others, thus achieving a more comprehensive detection system.
[1] M. Jones, “Spoofing in the black sea: What really happened?,”[online] Available: https://www.gpsworld.com/spoofing-in-the-black-sea-what-really-happened/.
[2] J. M. Anderson, K. L. Carroll, N. P. DeVilbiss, J. T. Gillis, J. C. Hinks, B. W. O’Hanlon, et al., “Chips-message robust authentication (Chimera) for GPS civilian signals,” Proc. 30th Int. Tech. Meeting Satell. Division Inst. Navigat. (ION GNSS), pp. 2388-2416, Nov. 2017.
[3]“European GNSS (Galileo) Open Service Signal in Space Interface Control Document Issue 2.0,” January 2021.
[4] Galileo Open Service Navigation Message Authentication (OSNMA) User ICD For The Test Phase Issue 1.0, November 2021.
[5] Galileo Open Service Navigation Message Authentication (OSNMA) Receiver Guidelines for the Test Phase Issue 1.3, January 2024.
[6] I. Fernandez-Hernandez et al., “Semiassisted Signal Authentication for Galileo: Proof of Concept and Results,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 4, pp. 4393-4404, Aug. 2023.
[7] A. Jafarnia-Jahromi, A. Broumandan, J. Nielsen, and G. Lachapelle, “GPS Vulnerability to Spoofing Threats and a Review of Antispoofing Techniques,” International Journal of Navigation and Observation, vol. 2012, pp. 1–16, 2012.
[8] L. Zhan, Y. Liu, W. Yao, J. Zhao and Y. Liu, “Utilization of Chip-Scale Atomic Clock for Synchrophasor Measurements,” IEEE Transactions on Power Delivery, vol. 31, no. 5, pp. 2299-2300, Oct. 2016.
[9] Microchip, Chip-Scale Atomic Clock (CSAC) SA.45s User’s Guide
[10] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song, “The TESLA broadcast authentication protocol,” CryptoBytes, 2002, 5, pp. 2-13.
[11] Jeff Laird, “PTP Background and Overview,” University of New Hampshire InterOperability Laboratory, July 2012.
[12] Council of the European Union, Brussels, Belgium, “Commission Delegated Regulation (EU) 2017/574 of 7 June 2016 supplementing Directive 2014/65/EU of the European Parliament and of the Council with regard to regulatory technical standards for the level of accuracy of business clocks,” 2016.
[13]“Synchrophasor Measurements for Power Systems,” IEEE Standard C37.118.1-2011, 2011.
[14]“Timing and synchronization for LTE-TDD and LTE-advance mobile networks,” Symmetricom, San Jose, CA, USA, White paper, 2014.
[15] H. Li, L. Han, R. Duan and G. M. Garner, “Analysis of the Synchronization Requirements of 5g and Corresponding Solutions,” IEEE Communications Standards Magazine, vol. 1, no. 1, pp. 52-58, March 2017.
[16] Lime Microsystems, “LimeSDR”, [Online] Available: https://limemicro.com/products/boards/limesdr/.
[17] Great Scott Gadgets, “HackRF One”, [Online] Available: https://greatscottgadgets.com/hackrf/.
[18] Ettus Research, “USRP B200”, [Online] Available: https://www.ettus.com/all-products/ub200-kit/.
[19]“Software-Defined GPS Signal Simulator.” Accessed: Jan. 15, 2023. [Online]. Available: https://github.com/osqzss/gps-sdr-sim
[20] Google LLC. “Raw GNSS Measurements.” Accessed: Jan. 1, 2023. [Online]. Available: https://developer.android.com/
[21] A. Rustamov, A. Minetto and F. Dovis, “Improving GNSS Spoofing Awareness in Smartphones via Statistical Processing of Raw Measurements,” IEEE Open Journal of the Communications Society, vol. 4, pp. 873-891, 2023.
[22] N. Gogoi, A. Minetto and F. Dovis, “On the Cooperative Ranging between Android Smartphones Sharing Raw GNSS Measurements,” 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 2019
[23] Jyh-Ching Juang, Ying-Tong Chen, and Chung-Kee Chua, “Inter-Satellite and Inter-Receiver Aiding in the Verification of OSNMA,” Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), Denver, Colorado, September 2023.
[24] J. R. v. d. Merwe, X. Zubizarreta, I. Lukčin, A. Rügamer and W. Felber, “Classification of Spoofing Attack Types,” 2018 European Navigation Conference (ENC), Gothenburg, Sweden, 2018.
[25] M. L. Psiaki and T. E. Humphreys, “GNSS Spoofing and Detection,” Proceedings of the IEEE, vol. 104, no. 6, pp. 1258-1270, June 2016.
[26] D. Margaria, B. Motella, M. Anghileri, J. -J. Floch, I. Fernandez-Hernandez and M. Paonni, “Signal Structure-Based Authentication for Civil GNSSs: Recent Solutions and Perspectives,” IEEE Signal Processing Magazine, vol. 34, no. 5, pp. 27-37, Sept. 2017.
[27] B. Motella, M. Nicola and S. Damy, “Enhanced GNSS Authentication Based on the Joint CHIMERA/OSNMA Scheme,” IEEE Access, vol. 9, pp. 121570-121582, 2021.
[28] I. F. Hernández, T. Ashur, V. Rijmen, C. Sarto, S. Cancela and D. Calle, “Toward an Operational Navigation Message Authentication Service: Proposal and Justification of Additional OSNMA Protocol Features,” 2019 European Navigation Conference (ENC), Warsaw, Poland, 2019.
[29] M. Nicola, B. Motella, M. Pini and E. Falletti, “Galileo OSNMA Public Observation Phase: Signal Testing and Validation,” IEEE Access, vol. 10, pp. 27960-27969, 2022.
[30] A. Galan, I. Fernandez-Hernandez, L. Cucchi and G. Seco-Granados, “OSNMAlib: An Open Python Library for Galileo OSNMA,” 2022 10th Workshop on Satellite Navigation Technology (NAVITEC), Noordwijk, Netherlands, 2022.
[31] M. T. Gamba, M. Nicola and B. Motella, “Galileo OSNMA: an implementation for ARM-based embedded platforms,” 2020 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2020.
[32] M. Troglia Gamba, M. Nicola, and B. Motella, “Computational Load Analysis of a Galileo OSNMA-Ready Receiver for ARM-Based Embedded Platforms,” Sensors, vol. 21, no. 2, p. 467, Jan. 2021.
[33] W. D. Jones. 2013. “Chip-Scale Atomic Clocks,” [Online]. Available: http://spectrum. ieee.org/semiconductors/devices/chipscale-atomic-clock.