簡易檢索 / 詳目顯示

研究生: 邱伊伶
Chiu, Yi-Ling
論文名稱: 以PLIC-VOF模擬波浪碎波過程
Numerical Study of Wave Breaking Using PLIC-VOF Method
指導教授: 許泰文
Hsu, Tai-Wen
歐善惠
Ou, Shan-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 流體體積法分段線性界面重建法碎波
外文關鍵詞: wave breaking, PLIC, RANS, k −ε, VOF
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以RANS (Reynolds Averaged Navier-Stokes equations) 方程式建立二維數值模式,結合k −ε 紊流閉合模式,模擬波浪通過斜坡後碎波流場的變化情形,自由液面的追蹤則採用流體體積法 (Volume of Fluid,VOF) 耦合分段線性界面重建法 (Piecewise Linear Interface Construction,PLIC) 液面捕捉方式處理複雜之碎波液面變形。本研究選取Ting 與Kirby (1994) 的溢波型試次實驗資料來校驗模式的適用性與正確性。結果顯示於波浪水位變化與速度分佈的模擬皆呈現良好的一致性,顯示本模式能夠有效地模擬波浪碎波前後,從淺化過程到碎波及能量消散階段的水理變化特性。

    The purpose of the present study is to develop a two-dimensional numerical
    model based on RANS (Reynolds Averaged Navier-Stokes) equations combined
    with a second-order k − ε turbulence closure model. The wave breaking process
    such as water waves travel over a sloping bottom is investigated. To track free
    surface movements, the VOF (Volume of Fluid) coupled with PLIC (Piecewise Linear Interface Construction) method is employed. To ensure the accuracy of the numerical model, numerical results were compared with Ting and Kirby’s (1994) experiment data for the case of spilling breaker. Good agreement between numerical results and experimental data has been observed for shoaling and breaking cnoidal
    waves on a sloping bottom in terms of free surface profiles and mean velocities.

    中文摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 前人研究 5 1.2.1 碎波流場與紊流之試驗研究 5 1.2.2 碎波流場與紊流之數值模擬研究 6 1.2.3 自由液面捕捉方式 7 1.3 研究架構 10 第二章 理論基礎 12 2.1 控制方程式 12 2.2 k −ε 紊流模式 14 2.3 初始條件 19 2.4 邊界條件 19 2.4.1 上游邊界條件 20 2.4.2 下游邊界條件 21 2.4.3 底床結構物邊界條件 22 2.4.4 自由液面邊界條件 23 第三章 數值模式 25 3.1 格網變數之配置 25 3.1.1 交錯格網 25 3.1.2 格網類別 26 3.2 離散方程式 27 3.2.1 對流項與擴散項之離散 30 3.2.2 壓力項之離散 31 3.2.3 時間項之離散 31 3.3 壓力疊代法則 32 3.3.1 滿格網壓力修正量 33 3.3.2 自由液面格網壓力修正量 34 3.4 自由液面 36 3.5 計算流程 39 第四章 結果與討論 41 4.1 試驗配置與條件 41 4.2 水位變化驗證 42 4.3 流速驗證 45 4.4 碎波過程之紊流傳輸機制 48 第五章 結論與建議 60 5.1 結論 60 5.2 建議 62 參考文獻 63

    1. Amsden, A. A. and Harlow F. H., The SMAC Method: A Numerical Technique for Calculation Incompressible Fluid Flows. Los Alamos Scientific Laboratory, Report LA-4370 (1971).
    2. Battjes, J. A., “Surf-Zone Dynamics,” Annual Review Fluid Mechanics, Vol. 20, pp. 257-293 (1988).
    3. Bossinesq, J., “Essai Sur la Théorie des Eaux Courantes,” Mémoires Preésentés par Divers Savants á l’ Académie des Sciences, Vol. 23, pp. 252-260 (1877).
    4. Bradford, S. F., “Numerical Simulation of Surf Zone Dynamics,” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 126, pp. 1-13 (2000).
    5. Chan, R. K. C. and Street R. L., “A Computer Study of Finite-Amplitude Water Waves,” Journal of Computational Physics, Vol. 6, pp. 68-94. (1970).
    6. Enright, D., Fedkiw, R., Ferziger, J. and Mitchell I., “A Hybrid Particle Level Set Method for Improved Interface Capturing,” Journal of Computational Physics, Vol. 183, pp. 88-116 (2002).
    7. Gueyffier D., Li J., Nadim A., Scardovelli R. and Zaleski S., “Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional
    flows,” Journal of Computational Physics, Vol. 152, pp. 423-456 (1999).
    8. Harlow, F. H. and Welch J. E., “Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,” Physics of Fluids, Vol. 8, pp. 2182-2189 (1965).
    9. Hirt, C. W., Amsden A. A. and Cook, J. L., “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds,” Journal of Computational Physics, Vol. 14, pp. 227-253 (1974).
    10. Hirt, C. W., Nichols B. D. and Romero N. C., SOLA-a Numerical Solution Algorithm for Transient Fluid Flows. Los Alamos Scientific Laboratory, LA-5852, pp. 1-50 (1975).
    11. Hirt, C. W. and Nichols B. D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225 (1981).
    12. Korteweg, D. J. and de Vries G., “On the Change of form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves,” Philosophical Magazine, Series 5, Vol. 39, pp. 422-443 (1895).
    13. Launder, B. E. and Spalding D. B., “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics, Vol. 3, pp. 269-289 (1974).
    14. Launder, B. E., “Second-Moment Closure and its Use in Modeling Turbulent Industrial Flows,” International Journal for Numerical Methods in Fluids, Vol. 9, pp. 963-985 (1989).
    15. Lemos, C. M., “Simple Numerical Technique for Turbulent Flows with Free Surfaces,” International Journal for Numerical Methods in Fluids, Vol. 15, pp. 127-146 (1992).
    16. Le Méhaute, “Comparison of Fluvial and Coastal Similitude,” Proceedings of the Twelfth Conference on Coastal Engineering, Vol. 2, pp. 1077-1096 (1970).
    17. Lin, P. and Liu, P. L. F., “A Numerical Study of Breaking Waves in the Surf Zone,” Journal of Fluid Mechanics, Vol. 359, pp. 239-264 (1998a).
    18. Lin, P. and Liu, P. L. F., “Turbulence Transport, Vorticity Dynamics, and Solute Mixing under Plunging Breaking Waves in Surf Zone,” Journal of Geophysical
    Research, Vol. 103, pp. 15677-15694 (1998b).
    19. Nichols, B.D. and Hirt, C. W., “Improved Free Surface Boundary Conditions for Numerical Incompressible-Flow Calculations,” Journal of Computational Physics, Vol. 8, pp. 434-438 (1971).
    20. Noh, W. F., and Woodward, P., SLIC (Simple Line Interface Method) , In AI Van de Vooren and Zandbergen, P. J., editors, Lecture Notes in Physics, Vol. 59, pp. 330-340 (1976).
    21. Orlanski, I., “A Simple Boundary Condition for Unbounded Hyperbolic Flows,” Journal of Computational Physics, Vol. 21, pp 251-269 (1976).
    22. Osher, S. and Sethian J. A., “A Fonts Propagating with Curvature-Dependents Speed: Algorithms Based on Hamiltion-Jacobi Formulation,” Journal of Computational Physics, Vol. 79, pp 12-49 (1988).
    23. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C. (1980).
    24. Prandtl, L. “Bericht über Untersuchungen zur Ausgebildeten Turbulenz,” Zeitschr. Angewandte Mathematik und Mechanik, Vol. 5, pp. 136-139 (1925).
    25. Smagorinsky, J., “General Circulation Experiments with the Primitive Equations. I. The Basic Experiment,” Monthly Weather Review, Vol. 91, pp. 99-104, (1963).
    26. Svendsen, I. A. “Analysis of Surf Zone Turbulence,” Journal of Geophysical Research, Vol. 92, pp. 5115-5124 (1987).
    27. Ting, F. C. K. and Kirby, J. T., “Observation of Undertow and Turbulence in a Laboratory Surf Zone,” Coastal Engineering, Vol. 24, pp. 51-80 (1994).
    28. Ting, F. C. K. and Kirby, J. T., “Dynamics of Surf-Zone Turbulence in a Strong Plunging Breaker,” Coastal Engineering, Vol. 24, pp. 177-204 (1995).
    29. Ting, F. C. K. and Kirby, J. T., “Dynamics of Surf-Zone Turbulence in a Spilling Breaker,” Coastal Engineering, Vol. 27, pp. 131-160 (1996).
    30. Zhao, Q., Armfield, S. and Tanimoto, K., “Numerical Simulation of Breaking Waves by a Multi-Scale Turbulence Model,” Coastal Engineering, Vol. 51, pp. 53-80 (2004).
    31. 許泰文,「近岸水動力學」,中國土木水利工程學會 (2003) 。
    32. 謝志敏,「應用RANS 模擬波浪通過潛堤和沙漣流場」,國立成功大學水利及海洋工程學研究所博士論文 (2004) 。

    下載圖示 校內:2008-08-28公開
    校外:2008-08-28公開
    QR CODE