簡易檢索 / 詳目顯示

研究生: 莊詠盛
Chuang, Yung-Sheng
論文名稱: 運用電子飄移演算法於配電系統儲能容量最佳化規劃
Optimal Energy Storage Capacity Planning in Distribution System via Electron-Drifting Algorithm
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 64
中文關鍵詞: 儲能系統容量最佳化太陽光伏系統電價費率
外文關鍵詞: Energy storage system, capacity optimization, PV system, electricity tariff
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應全球電力需求增長與環境環保議題等因素,再生能源之使用已日趨普及,而太陽光伏系統更是重要的發展之一。然而太陽光伏系統滲透率過高會對原有之配電系統電壓帶來一定程度之衝擊,進而限制太陽光伏系統的發展。因此需要適切的電壓控制方法以有效抑制過電壓問題產生,進而增加太陽光伏系統併網容量。
    本文利用儲能系統以解決過電壓問題,並且提出雙迴圈最佳化演算法決定儲能系統最佳化裝置容量。儲能系統的導入能夠減少太陽光伏系統饋入削減量,且降低系統電壓衝擊使其符合法定規範,增加太陽光伏系統的使用率及併網容量。本文主要透過變壓器有載切換開關與太陽光伏系統及儲能系統變流器之實、虛功控制,達成電壓控制的目的。其中,採用電子飄移演算法於內迴圈決定一天前每個小時在固定一儲能系統裝置容量下,各裝置的實、虛功發電量最佳化運轉排程;基於內迴圈所得結果,於外迴圈再以電子飄移演算法決定儲能系統的最佳裝置容量。
    本文為驗證最佳化方法之可行性,利用實際之太陽光伏發電量與負載資料分析其成本效益,並與其他現有文獻之方法進行比較。同時為能了解時間電價費率結構對於本文提出之最佳化方法的影響,本文分析三種不同之時間電價費率整體收益。由數值模擬結果顯示,所提出之方法除可決定儲能系統最佳裝置容量外,較現有文獻方法能獲得更顯著之經濟效益。

    The challenges of increasing power demand and environmental problems have directed extensive attention to the usage of renewable energy, especially photovoltaic (PV) systems. However, high penetration of PV generation drastically affects the voltage of distribution systems, which may limit the growth and the development of PV systems. Consequently, an effective voltage control method is necessary to mitigate overvoltage problems and to increase the hosting capacity of PV systems.
    This thesis utilizes an energy storage system (ESS) to eliminate voltage rise problems and proposes a dual-loop optimization method to determine the optimal capacities and inverter sizes of ESSs. ESSs can thus reduce feed-in active power curtailment of PV systems. In the inner loop of the optimization, for a specified ESS capacity the daily active and reactive power scheduling, including on-load tap changer, PV, and ESS, are optimized by an electron drifting algorithm (EDA). The outer loop uses an EDA to optimize the ESS capacities and the inverter sizes.
    To verify the feasibility of the proposed optimization method, real PV power generation data and load profiles are used to analyze the economic benefits of the proposed method. Moreover, three different kinds of electricity tariff structures are used to analyze the economic benefits. With the optimal capacity of energy storage system determined, simulation results also show that the optimized policy produces more economic benefits than other policies produce.

    摘要 iii ABSTRACT iv 誌謝 v Tables of Contents vi List of Figures ix List of Tables xi Chapter 1. INTRODUCTION 1 1.1. Backgrounds and Motivations 1 1.2. Review of Literature 2 1.3. Research Methods and Contributions 5 1.4. Organization of the Thesis 7 Chapter 2. PROBLEM DESCRIPTION AND SYSTEM MODELING 8 2.1. Introduction 8 2.2. Overall System Structure 8 2.3. Voltage Rise Analysis 9 2.4. Models of System 11 2.4.1. On-Load Tap Changer 11 2.4.2. Battery Model 12 2.4.3. PV System Model 14 Chapter 3. PROBLEM FORMULATION AND THE PROPOSED ESS SIZING OPTIMIZATION METHOD 20 3.1. Introduction 20 3.2. Structure of Dual-Loop Energy Storage Sizing Optimization 20 3.3. Formulation of Energy Storage Sizing Optimization 22 3.3.1. Objective Function of Energy Storage Sizing Optimization 22 3.3.2. Objective Function of One-Day Scheduling Optimization 22 3.3.3. Inequality Constraints 23 3.3.4. Equality Constraints 24 3.4. Electron Drifting Algorithm 24 Chapter 4. SIMULATION RESULTS 30 4.1. Introduction 30 4.2. Considered Electricity Tariffs 30 4.2.1. Taipower TOU 31 4.2.2. PG&E TOU 31 4.2.3. ERCOT Locational Marginal Price 32 4.3. The Test Systems 33 4.3.1. Single-Feeder system 33 4.3.2. 23-bus TPC System 35 4.4. The Simulation Results of Single-Feeder System 37 4.4.1. One-Day Active/Reactive Power Scheduling Results 37 4.4.2. Cost Analysis of ESS 42 4.4.3. Optimization Results of Energy Storage Capacity and Inverter Sizing 45 4.4.4. Optimization Results of Additional PV Installation Capacity 46 4.5. The Simulation Results of 23-bus TPC system 46 4.5.1. One-Day Active/Reactive Power Scheduling Results 46 4.5.2. Cost Analysis of ESS 48 4.5.3. Optimization Results of Energy Storage Capacity and Inverter Sizing 52 4.5.4. Optimization Results of Additional PV Installation Capacity 53 4.6. Performance Comparison 54 4.6.1. Comparison with Micro-GA of One-Day Scheduling Results 54 4.6.2. Performance Comparison with Other Methods 55 Chapter 5. CONCLUSION AND FUTURE PROSPECTS 57 5.1. Conclusion 57 5.2. Future Prospects 58

    [1] T. Verschueren, K. Mets, B. Meersman, M. Strobbe, C. Develder, and L. Vandevelde, “Assessment and Mitigation of Voltage Violations by Solar Panels in a Residential Distribution Grid,” Smart Grid Communications (SmartGridComm), 2011 IEEE International Conference on, Brussels, pp. 540-545, Oct. 2011.
    [2] A. E. Kiprakis and A. R. Wallace, “Maximising Energy Capture from Distributed Generators in Weak Networks,” in IEE Proceedings - Generation, Transmission and Distribution, vol. 151, no. 5, pp. 611-618, 13 Sept. 2004.
    [3] X. Liu, A. Aichhorn, L. Liu, and H. Li, “Coordinated Control of Distributed Energy Storage System With Tap Changer Transformers for Voltage Rise Mitigation Under High Photovoltaic Penetration,” in IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 897-906, June 2012.
    [4] Y. Liu, J. Bebic, B. Kroposki, J. de Bedout, and W. Ren, “Distribution System Voltage Performance Analysis for High-Penetration PV,” Energy 2030 Conference, 2008. ENERGY 2008. IEEE, Atlanta, GA, pp. 1-8, Nov. 2008,.
    [5] G. Mokhtari, A. Ghosh, G. Nourbakhsh, and G. Ledwich, “Smart Robust Resources Control in LV Network to Deal With Voltage Rise Issue,” in IEEE Transactions on Sustainable Energy, vol. 4, no. 4, pp. 1043-1050, Oct. 2013.
    [6] D. C. Garcia, A. L. F. Filho, M. A. G. Oliveira, O. A. Fernandes, and F. A. D. Nascimento, ”Voltage Unbalance Numerical Evaluation and Minimization,” Electric Power System Research, vol. 79, pp. 1441–1445, Oct. 2009.
    [7] G. Mokhtari, G. Nourbakhsh, F. Zare, and A. Ghosh, “Overvoltage Prevention in LV Smart Grid Using Customer Resources Coordination,” Energy and Buildings, vol. 61, pp. 387–395, Jun. 2013.
    [8] P. Trichakis, P. C. Taylor, P. F. Lyons, and R. Hair, “Predicting the Technical Impacts of High Levels of Small-scale Embedded Generators on Low-voltage Networks,” IET Renewable Power Generation, vol. 2, pp. 249–262, Dec. 2008.
    [9] N. K. C. Nair and L. Jing, “Power Quality Analysis for Building Integrated PV and Micro Wind Turbine in New Zealand,” Energy and Buildings, vol. 58, pp. 302–309, March 2013.
    [10] F. Marra, G. Yang, C. Træholt, J. Østergaard, and E. Larsen, "A Decentralized Storage Strategy for Residential Feeders With Photovoltaics," IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 974-981, Mar. 2014.
    [11] A. Canova, L. Giaccone, F. Spertino, and M. Tartaglia, “Electrical Impact of Photovoltaic Plant in Distributed Network,” IEEE Transactions on Industry Applications, vol. 45, pp. 341–347, Jan.- Feb. 2009.
    [12] M. Thomson and D. G. Infield, “Network Power-Flow Analysis for A High Penetration of Distributed Generation,” IEEE Transactions on Power System, vol. 22, pp. 1157–1162, Aug. 2007.
    [13] R. Tonkoski, D. Turcotte, and T. H. M. El-Fouly, “Impact of High PV Penetration on Voltage Profiles in Residential Neighborhoods,” IEEE Transactions on Sustainable Energy, vol. 3, pp. 518–527, Jul. 2012.
    [14] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, “Summary of Distributed Resources Impact on Power Delivery Systems,” IEEE Transactions on Power Delivery, vol. 23, pp. 1636–1644, Jul. 2008.
    [15] J. Fitzer and W. E. Dillon, “Impact of Residential Photovoltaic Power Systems on the Distribution Feeder,” IEEE Transactions on Energy Conversion, vol.EC-1, pp. 39–42, Dec. 1986.
    [16] D. L. Garrett and S. M. Jeter, “Photovoltaic Voltage Regulation Impact Investigation Technique—I: Model Development,” IEEE Transactions on Energy Conversion, Vol. 4, pp. 47–53, Mar. 1989.
    [17] N. D. Hatziargyriou, T. S. Karakatsanis, and M. Papadopoulos, “Probabilistic Load Flow in Distribution Systems Containing Dispersed Wind Power Generation,” IEEE Transactions on Power System, vol. 8, pp. 159–165, Feb. 1993.
    [18] B. H. Chowdhury and A. W. Sawab, “Evaluating the Value of Distributed Photovoltaic Generations in Radial Distribution Systems,” IEEE Transactions on Energy Conversion, vol. 11, pp. 595–600, Sep. 1996.
    [19] A. Woyte, V. V. Thong, R. Belmans, and J. Nijs, “Voltage Fluctuations on Distribution Level Introduced by Photovoltaic Systems,” IEEE Transactions on Energy Conversion, vol. 21, pp. 202–209, Mar. 2006.
    [20] S. Conti and S. Raiti, “Probabilistic Load Flow using Monte Carlo Techniques for Distribution Networks with Photovoltaic Generators,” Solar Energy, vol. 81, pp. 1473–1481, Dec. 2007.
    [21] R. O'Gorman and M. A. Redfern, “Voltage Control Problems on Modern Distribution Systems, “ Power Engineering Society General Meeting, 2004. IEEE, Denver, CO, vol.1, pp. 662-667, 2004.
    [22] S. Toma, T. Senjyu, Y. Miyazato, A. Yona, T. Funabashi, A. Y.Saber, and K. Chul-Hwan, “Optimal Coordinated Voltage Control in Distribution System,” IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, Pittsburgh, PA, pp. 1–7, Jul. 2008.
    [23] M. R. Salem, L. A. Talat, and H. M. Soliman, “Voltage Control by Tap-Changing Transformers for a Radial Distribution Network,” IEE Proceedings Generation, Transmission and Distribution, vol. 144, pp. 517-520, Nov. 1997.
    [24] N. Etherden and M. H. J. Bollen, “Increasing the Hosting Capacity of Distribution Networks by Curtailment of Renewable Energy Resources,” PowerTech, 2011 IEEE Trondheim, Trondheim, pp. 1-7, 2011.
    [25] T. Stetz, F. Marten, and M. Braun, “Improved Low Voltage Grid-Integration of Photovoltaic Systems in Germany,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 534-542, Apr. 2013.
    [26] A. Ballanti, F. Pilo, A. Navarro-Espinosa, and L. F. Ochoa, “Assessing the Benefits of PV Var Absorption on the Hosting Capacity of LV Feeders,” IEEE PES ISGT Europe 2013, Lyngby, pp. 1-5, 2013.
    [27] E. Demirok, P. C. González, K. H. B. Frederiksen, D. Sera, P. Rodriguez, and R. Teodorescu, “Local Reactive Power Control Methods for Overvoltage Prevention of Distributed Solar Inverters in Low-Voltage Grids,” in IEEE Journal of Photovoltaics, vol. 1, no. 2, pp. 174-182, Oct. 2011.
    [28] M. H. J. Bollen and A. Sannino, “Voltage Control with Inverter-Based Distributed Generation,” IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 519–520, Jan. 2005.
    [29] J. von Appen, T. Stetz, M. Braun, and A. Schmiegel, “Local Voltage Control Strategies for PV Storage Systems in Distribution Grids,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 1002-1009, Mar. 2014.
    [30] J. Tant, F. Geth, D. Six, P. Tant, and J. Driesen, “Multiobjective Battery Storage to Improve PV Integration in Residential Distribution Grids,” IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 182-191, Jan. 2013.
    [31] M. Toledo, D. O. Filho, A. S. A. C. Diniz, J. Martins, and M. H. M. Vale, “Methodology for Evaluation of Grid-Tie Connection of Distributed Energy Resources—Case Study with Photovoltaic and Energy Storage,” IEEE Transactions on Power System, vol. 28, pp. 1132–1139, May 2013.
    [32] A. S. A. Awad, T. H. M. EL-Fouly, and M. M. A. Salama, “Optimal ESS Allocation for Load Management Application,” IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 327-336, Jan. 2015.
    [33] H. Sugihara, K. Yokoyama, O. Saeki, K. Tsuji, and T. Funaki, “Economic and Efficient Voltage Management Using Customer-Owned Energy Storage Systems in a Distribution Network with High Penetration of Photovoltaic Systems,” in IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 102-111, Feb. 2013.
    [34] 台灣電力股份有限公司, 台灣電力股份有限公司再生能源發電系統併聯技術要點, 12月, 2009.
    [35] E. Rivas, J. C. Burgos, and J. C. Garcia-Prada, “Vibration Analysis Using Envelope Wavelet for Detecting Faults in the OLTC Tap Selector,” in IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1629-1636, Jul. 2010.
    [36] Y. Yang, H. Li, A. Aichhorn, J. Zheng, and M. Greenleaf, “Sizing Strategy of Distributed Battery Storage System with High Penetration of Photovoltaic for Voltage Regulation and Peak Load Shaving,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 982-991, Mar. 2014.
    [37] M. Farrokhifar, “Optimal Operation of Energy Storage Devices with RESs to Improve Efficiency of Distribution Grids; Technical and Economical Assessment,” International Journal of Electrical Power & Energy Systems, vol. 74, pp. 153-161, Jan. 2016.
    [38] M. C. Russell, “The Promise of Reliable Inverters for PV Systems: The Microinverter Solution,” Jun. 2010. [Online]. Available: http://www.greentechmedia.com/articles/read/the-promise-of-reliable-inverters-for-pv-systems-the-micro-inverter-solutio. [Accessed May 2016].
    [39] R. Margolis, “A Review of PV Inverter Technology Cost and Performance Projections,” Jan. 2006. [Online]. Available: http://www.nrel.gov/docs/fy06osti/38771.pdf. [Accessed May 2016].
    [40] PVinsights Grid the world, “Retailer Price-Grid Tie Inverter 2000W+ Weekly Retailer Price,” 2014. [Online]. Available: http://pvinsights.com/RetailerPrice.php. [Accessed Feb. 2016].
    [41] M. Braun, “Reactive Power Supplied by PV Inverters – Cost Benefit Analysis,” in Proc. 22nd Eur. PVSEC, Milan, pp. 1–7, 2007.
    [42] J.T. Liao and H.T. Yang, “A Novel Electrons Drifting Algorithm for Non-linear Optimization Problems,” 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), ChangSha, China,Aug. 2016. (accepted)
    [43] 台灣電力股份有限公司,台灣電力公司電價表, 10月, 2014. [Online]. Available: http://www.taipower.com.tw/UpFile/_userfiles/file/1041001%E8%A9%B3%E7%B4%B0%E9%9B%BB%E5%83%B9%E8%A1%A8.pdf. [Accessed Jul. 2016].
    [44] Pacific Gas and Electric California, “Time of Use Plan (E6)”, 2016. [Online]. Available: http://www.pge.com/en/myhome/saveenergymoney /plans/tou/index.page?#toua. [Accessed April 2016].
    [45] Electric Reliability Council of Texas, “Day-Ahead Market Hourly Locational Marginal Price Results Reports,” 2015. [Online]. Available: http://www.ercot.com/mktinfo/dam. [Accessed April 2016].
    [46] A. Ellis, “Grid Operations and High Penetration PV,” presented at the Utility/Lab Workshop PV Technol. Syst., Tempe, AZ, USA, 2010.
    [47] K. Krishnakumar, “Micro-Genetic Algorithms for Stationary and Non-Stationary Function Optimization”, Proc. of the SPIE: Intelligent Control and Adaptive Systems, vol. 1196, pp. 289-296, 1989.

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE