| 研究生: |
林冠宇 Lin, Guan-Yu |
|---|---|
| 論文名稱: |
灰色理論應用於電力設備局部放電狀態監測之趨勢分析 Application of Gray Theory to the Trend Analysis of Partial Discharge Condition Monitoring in Power Equipment |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 灰色理論 、移動平均法 、趨勢分析 、局部放電 、電力設備 |
| 外文關鍵詞: | grey theory, simple moving average, trend analysis, partial discharge, electric equipment |
| 相關次數: | 點閱:99 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要應用灰色理論對電力設備局部放電之量測峰值趨勢分析並以實際量測信號驗證之。利用高頻比流器(HFCT)感應電力設備電流脈衝訊號,以類比數位轉換電路(ADC)搭配現場可程式化邏輯閘陣列(FPGA)進行資料擷取與傳輸,萃取其脈衝特徵值建立峰值趨勢並觀察被試物趨勢變化。趨勢分析上使用移動平均法進行資料前處理濾除峰值趨勢高頻成份得到平穩趨勢走向,接著以灰色理論對峰值趨勢進行預測,將兩者結合應用建立動態灰色預測系統。主要目標為預測電力設備訊號之峰值趨勢常態分布範圍,並以此範圍當作新的警戒門檻,同時作為系統過濾資料之標準。進行長期的趨勢監測時隨著量測時間越來越長,電腦端需要分析的資料量也越來越多,因此只保留超過新警戒門檻資料的原始波形,來過濾並減少資料量。經過動態灰色預測系統過濾後的原始波形再使用小波濾雜訊法(Wavelet Denoising)濾除環境雜訊並繪製成二維相分布圖譜以觀察其相位分布狀態。將模擬後的演算法設計於LabVIEW人機介面上進行實際測試並且透過PD校正器(Calibrator)、單相模鑄式變壓器、25-kV XLPE電力電纜、345-kV 輸電級充油地下電纜對動態灰色預測系統的性能進行驗證。
This study aims to analyze the partial discharge peak value trend of electric equipment measured with Grey Theory and prove with actually measured signals. A high-frequency current transformer is utilized for inducing current pulse signals of electric equipment and an analog-to-digital converter matched with field programmable gate array is used for the data retrieval and transmission to extract the pulse eigenvalue for establishing the peak value trend and observing the trend change of the tested object. For trend analyses, Moving Average Method is used for the data preprocessing to filter high-frequency contents in the peak value trend to acquire the stable trend, and Grey Theory is applied to predict the peak value trend. The two are combined to establish the dynamic grey forecasting system. The major objective is to predict the normal distribution area of the signal peak value trend of electric equipment and the area is used for the new alert limit as well as the data filtering standard of the system. The long-term trend detection is proceeded, and the data volume for analyses in the computer end would increase with the longer measuring time. In this case, merely original waveforms exceeding the new alert limit is kept to filter and reduce the data volume. Original waveforms, after being filtered with the dynamic grey forecasting system, are further filtered the environmental noise with wavelet de-noising and drawn a 2D phase distribution map in order to observe the phase distribution state. The simulated algorithm is designed on the LabVIEW human-machine interface for actual testing, and the performance of PD calibrator, single-phase cast resin transformer, 25-kV XLPE power cable, and 345-kV transmission oil-filled underground cable on the dynamic grey forecasting system is verified.
[1] G. Paoletti and A. Golubev, “Partial Discharge Theory and Applications to Electrical Systems”, IEEE Conference Record of 1999 Annual Pulp and Paper Industry Technical Conference, Cat. No.99 CH36338, pp. 124-138, 1999。
[2] 林世豪,「局部放電多通道量測分析系統」,國立成功大學電機工程學系碩士論文,2012。
[3] 古峰昌,「多功能局部放電分析儀之研製及其應用」,國立台灣科技大學電機工程系博士論文,2013。
[4] 陳耿堯,「結合音射探頭組與單晶片微控制器檢測電路之局部放電檢測系統」,國立成功大學電機工程學系碩士論文,2013。
[5] 林典立,「局部放電遠端檢測監視系統」,國立成功大學電機工程學系碩士論文,2015。
[6] J. Densley, “Ageing Mechanisms and Diagnostics for Power Cables-An Overview”, IEEE Electrical Insulation Magazine, Vol. 17, No. 1, pp. 14-22, 2001.
[7] Y. A. Jiang, B. H. Zhang, N. K. Gao, X. Sun, and Z. G. Peng, “Study on the Characteristics of Partial Discharge During the Aging of Oil-paper Insulation in Oil-filled Cable”, High Voltage Engineering, Vol. 32, No. 7, pp. 54-57, 2006.
[8] 台灣電力股份有限公司,「345 kV充油電纜及XLPE電纜部分放電線上偵測研究」,研究計劃編號:5460400056,2015。
[9] J. C. Hsieh, C. C. Tai, C. C. Su, C. Y. Chen, T. C. Huang, and Y. H. Lin, “Evaluation and Comparison of Power Cable Insulation Defect Detection Methods”, Journal of Advanced Engineering, Vol. 2, No. 4, pp. 233-237, 2007.
[10] S. Birlasekaran, “Comparison of Known PD Signals With the Developed and Commercial HFCT Sensors”, IEEE Transactions on Power Delivery, Vol. 22, No. 3, pp. 1581-1590, 2007.
[11] 鄭凱中,「電力電纜局部放電檢測與圖譜辨識之研究」,國立成功大學電機工程學系碩士論文,2008。
[12] J. A. Ardila-Rey, J. M. Martínez-Tarifa, G. Robles, and M.V. Rojas-Moreno, “Partial Discharge and Noise Separation by Means of Spectral-Power Clustering Techniques”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 20, No. 4, pp. 1436-1443, 2013.
[13] J. M. Martínez-Tarifa, J. A. Ardila-Rey, and G. Robles, “Automatic Selection of Frequency Bands for the Power Ratios Separation Technique in Partial Discharge Measurements: Part I, Fundamentals and Noise Rejection in Simple Test Objects”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 4, pp. 2284-2292, 2015.
[14] J. A. Ardila-Rey, J. M. Martínez-Tarifa, and G. Robles, “Automatic Selection of Frequency Bands for the Power Ratios Separation Technique in Partial Discharge Measurements: Part II, PD Source Recognition and Applications”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 4, pp. 2293-2301, 2015.
[15] R. Mardiana and C. Q. Su, “Partial Discharge Location in Power Cables using a Phase Difference Method”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, No. 6, pp. 1738-1746, 2010.
[16] 鄭惟元,「以灰色理論為基礎運用立體視覺做室內自動車導航之研究」,台北科技大學電腦通訊與控制研究所,2000。
[17] K. T. Hsu, T. M. Yan, and P. W. Liu, “A Study on the Annualized Medical Expense Prediction Model of the Bureau of National Healthy Insurance”, IEEE International Conference on Systems Man and Cybernetics, pp. 764-769, 2006.
[18] W. N. Pi and L. C. Liou, “Electric Power Demand Forecasting in Taiwan via Grey Prediction”, Journal of Science and Engineering Technology, Vol. 3, No. 2, pp. 11-18, 2007.
[19] S. Chen, Y. Wang, F. Lyu, and H. Yang, “Short-term Load Forecasting Based on Gray Theory and Neural Network”, Journal of Shanghai University of Electric Power, Vol. 29, No. 6, pp. 527-531, 2013.
[20] J. L. Shang and M. Fang, “New Optimized Method of High-Precision Grey GM(1,1) Forecasting Model”, Journal of Electronics and Information Technology, Vol. 32, No. 6, pp. 1301-1305, 2010.
[21] 洪國禎、吳國榮,「改良式GM(1,1)灰預測模型於台電電量需求預測之研究」,工程科技與教育學刊,第五卷,第三期,pp. 446-458,2008。
[22] X. F. Li, C. J. Huang, Y. QIAN, and X. C. Jiang, “Preliminary Investigation of Trend Analyzing Method for Partial Discharge”, High Voltage Apparatus, Vol. 43, No. 6, pp. 409-415, 2007.
[23] “High Voltage Test Techniques - Partial Discharge Measurement”, IEC 60270, 2000.
[24] J. M. Mart´ınez-Tarifa, G. Robles, M. V. Rojas-Moreno, and J. Sanz-Feito, “Partial Discharge Pulse Shape Recognition Using An Inductive Loop Sensor”, Measurement Science And Technology, Vol. 21, No. 10, pp. 1-10, 2010.
[25] A. Eigner and K. Rethmeier, “An Overview on the Current Status of Partial Discharge Measurements on AC High Voltage Cable Accessories”, IEEE Electrical Insulation Magazine, Vol. 32, No. 2, 2016.
[26] D. A. Nattrass, “Partial Discharge Measurement and Interpretation”, IEEE Electrical Insulation Magazine, Vol. 4, No. 3, pp.10-23, 1988.
[27] 喀什蘭若,「移動平均線」,經史子集出版社,2000。
[28] J. Collins,「線索:移動平均線MA」,經史子集出版社,2005。
[29] 黃俊傑,「淺談動平均濾波器」,程式人雜誌,2013。
[30] J. L. Deng, “Introduction of Grey System Theory”, Journal of Grey System, Vol. 1, No. 1, pp. 1-24, 1989.
[31] 江金山、吳佩玲、蔣祥第、張廷政、詹福賜、張軒廷、溫坤禮,「灰色理論入門 The Introduction of Grey System Theory」,高立圖書有限公司,1998。
[32] 溫坤禮、張簡士琨、葉鎮愷、王建文、林慧珊,「MATLAB在灰色系統理論之應用」,全華圖書股份有限公司,2007。
[33] 江佩蓉,「使用分群演算法與類神經網路辨別電力電纜局部放電訊號」,國立成功大學電機工程學系碩士論文,2015。
[34] “HFCT 100/50 High Frequency Current Transformer”, IPEC.
[35] “AD9510”, Analog Devices.
[36] “FMC104 Star AD Daughter Card”, 4DSP.
[37] “FMC104 User Manual”, 4DSP.
[38] “ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable SoC User Guide”, XILINX.
[39] “IMC-21A-S-SC-T”, MOXA.
[40] “PD Calibration The Way to Maintain the Accuracy of PD Measurement Systems”, Monitoring and Diagnostics Seminar Taiwan, 2004.
[41] 王嘉斌,「使用導波管與特殊設計的音射探頭完成模鑄型變壓器之局部放電的檢測與定位」,南榮技術學院工程科技研究所碩士論文,2010。
[42] 陳毅倫,「電力電纜良率檢測系統」,國立成功大學電機工程學系碩士論文,2016。