簡易檢索 / 詳目顯示

研究生: 沈子雄
Shen, Tzu-Hsiung
論文名稱: 二元泛圈性質在壞點及壞邊的超立方體上的研究
Bipancyclicity on the Hypercube with Both Faulty Vertices and Faulty Edges
指導教授: 謝孫源
Hsieh, Sun-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 20
中文關鍵詞: 超立方體互連網路環路嵌入容錯嵌入二元泛圈
外文關鍵詞: Hypercube, interconnection networks, fault-tolerant embedding, cycle embedding, bipancyclicity
相關次數: 點閱:136下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   對於一個二分圖G,若它包含了長度從4到|V(G)|的環路,則我們稱它有二元泛圈性質,其中|V(G)|是指圖G中頂點的個數。Fv及Fe分別為一個n-維超立方體上壞點及壞邊的集合。在這篇論文中,我們證明在一個壞點及壞邊的超立方體上(Qn – Fv– Fe),可以找到它的二元泛圈性質(環路長度從4到|V(Qn)|– 2|Fv|),其中Fv + Fe <= n-2 . 因為Qn是分割大小相同的二分圖並且也是度數為n的正規圖,所以我們的容錯數及所找的最大環路在其最差狀況時都是最佳的。

      A bipartite graph G is bipancyclic if it contains cycles of every even length from 4 to |V(G)| inclusive, where |V(G)| is the number of vertices of G. Let Fv(respectively, Fe) be the set of faulty vertices(respectively, faulty edges) in an n-dimensional hypercube Qn. In this paper,we show that Qn-Fv-Fe contains fault-free cycles of every even length from 4 to |V(Qn)|-2|Fv| when
    |Fv|+|Fe| < = (n-2). Since Qn is bipartite of equal-size partite sets, and is regular of vertex-degree n, both the number of tolerable faults and the length of a longest fault-free cycle obtained are optimal in the worst case.

    Abstract i Contents ii List of Figures iii 1 Introduction 1 1.1 Hypercube 2 1.2 Motivation and Results 6 1.3 Organization of the Paper 7 2 Preliminaries 8 2.1 De¯nitions and Notations 8 2.2 Preliminaries 9 3 Bipancyclicity on the faulty hypercube 11 4 Conclusion 19 Bibliography 20

    [1] S. G. Akl, Parallel Computation: Models and Methods, Prentice Hall,1997.
    [2] L. Bhuyan and D. P. Agrawal, "Generalised hypercubes and hyperbus structure for a computer network," IEEE Transactions on Computers,c.33,pp.323-333,1984.
    [3] Jung-Sheng Fu and Gen-Huey Chen, "Hamiltonicity of the Hierarchical Cubic Network," Theory of Computing Systems,vol. 35, pp.59-79, 2002.
    [4] W. T. Huang, W. K. Chen, and C. H. Chen, "Pancyclicity of Mobius cubes," in Proceedings of the 9th International Conference on Parallel and Distributed Systems(ICPADS'02)}, pp. 591-596, 2002.
    [5] F. T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays. Trees. Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
    [6] T. K. Li, C. H. Tsai, J. M. Tan, and L. H. Hsu, "Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes," Information Processing Letters, vol. 87, no. 2, pp.107-110, 2003.
    [7] D. B. West, Introduction to Graph Theory, Prentice-Hall,Upper Saddle River, NJ 07458, 2001.
    [8] Abhijit Sengupta, "On ring embedding in hypercubes with faulty nodes and links," Information Processing Letters, vol. 68,pp. 207-214, 1998.
    [9] S. B. Akers and B. Krishnamurthy, "A group-therretic model for symmetry interconnection networks," IEEE Trans. Computers,vol. 38, no. 4, pp.555-566, 1989.
    [10] L. N. Bhuyan and D. P. Agrawal, "Generalized Hypercube and Hyperbus structures for a Computer Network," IEEE Trans. Computers, vol. c-33, no. 4,
    pp.323-333, 1984.
    [11] J. P. Hayes, T. N. Mudge, and Q.F. Stout, "Architecture of hypercube supercomputer," Processings 1986 International Conference on Parallel Processing, pp.653-660,1986.
    [12] W. D. Hills, The Connection Machine, Combridge, Mass.:MIT Press,1985.

    下載圖示 校內:立即公開
    校外:2004-06-28公開
    QR CODE