簡易檢索 / 詳目顯示

研究生: 謝慕道
Hsieh, Mu-Tao
論文名稱: I.電導性聚合物之製備、反應機構與其應用 II.CuAlSe2 之電沉積、反應機構與其性質量測
I. Fabrication, mechanistic studies, and applications of conductive polymers II. Co-electrodeposition, mechanistic studies, and characterization of CuAlSe2
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 110
中文關鍵詞: 電沉積多巴胺酚紅對-乙醯胺基酚5-氨基四唑
外文關鍵詞: electrodeposition, CuAlSe2, dopamine, acetaminophen, 5-amino-1H-tetrazole
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • I-1. 以循環伏安法探討酚紅(sulfonephthalein)之電化學性質並於玻璃碳電極表面形成聚酚紅薄膜。研究發現酚紅結構中之醌甲基位置具電化學活性並且為酚紅氧化還原與聚合反應之主要來源。從酚紅的循環伏安圖以及酚紅與聚酚紅之紅外線光譜得知,以陽極方向掃描而得之自由基陽離子先行耦合,經鏈增長過程再進一步形成聚合物。經聚酚紅修飾之玻璃碳電極以計時安培分析法、線性掃描伏安法、微分脈衝伏安法探討對分析物質的異相催化反應常數、擴散係數、質傳係數與其他電化學參數。實驗結果顯示聚酚紅玻璃碳電極對對-乙醯胺基酚與多巴胺的氧化催化速率常數分別為1.29×103與8.45×102 M−1 s−1。對此二者之定性測量所得之線性範圍分別為0.4-1.8 mM (0.026 μA μM−1) 與20-160 μM ( 0.16 μA μM−1)。
    I-2. 數十年來,化學感測材料一直有穩定的發展,對於特定感測之對象這些材料具有相當程度以上的需求。然而,多功能材料或獨特性材料的研發是主要的屏障。本研究提出以新奈米結構聚合物作為電化學感測材料之合成與其催化效能探討。以5-氨基四唑(5-amino-1H-tetrazole)作為聚合單體,利用電聚合法施以氧化電位產生自由基以引發聚合反應而將這個單體聚合於電極上,產生之聚合物薄膜利用循環伏安法探討其電化學行為,其化學結構與反應機構以FTIR探討。以循環伏安法探討其可能之聚合機構,以計時安培分析法探討聚合物之氧化催化效率與其他電化學參數。最後聚合物修飾電極針對某些化合物做感測之應用,研究對象如dopamine, ascorbic acid, uric acid, acetaminophen等。期望此電極具有低感測極限、寬線性範圍、高選擇性、高穩定性等優點並具備發展潛力以應用於各個適當之領域。
    II. 以循環伏安法探討CuCl2、AlCl3與SeO2各個化合物於酸性水溶液環境下在玻璃碳電極上的電化學行為。並藉由伏安法對具有氧化還原活性物質之研究,以嘗試推測CuAlSe2在電極表面共沉積的機制。CuAlSe2的共沉積是由各個前驅物經由還原與(或)化學反應形成Al2Se3與Cu2Se,最後在電極表面結合形成最終產物。電沉積過程中加入三乙醇胺做為錯合劑以利共沉積的進行,在摻錫氧化銦玻璃電極上形成達到化學計量比的CuAlSe2薄膜。薄膜以X光繞射儀、場發射掃描式電子顯微鏡、紫外可見光光譜儀、歐傑電子能譜儀與X光能量分散光譜分析儀做材料定性定量與光學性質測量。

    I-1. The electrochemical properties of phenol red were investigated and the fabrication of poly(phenol red) film on glassy carbon electrode was achieved by the technique of cyclic voltammetry. The sector of quinone methide in the structure of phenol red was found electroactive in aqueous solution and is the center of redox reactions for polymerization. Cyclic voltammograms of phenol red and FTIR spectra of both phenol red and poly(phenol red) suggest that the radical cations which were generated from the scans in anodic direction first coupled to a dimer and propagated further into polymers. The modified electrode was exploited in electrochemical studies such as chronoamperometry, linear sweep voltammetry, and differential pulse voltammetry for the evaluation of the rate constant of heterogeneous catalytic reaction along with the diffusion coefficients and transfer coefficients of acetaminophen and dopamine, and simultaneous determination of the analytes of interest. Heterogeneous rate constant of 1.29×103 and 8.45×102 M−1 s−1 was each evaluated for the oxidative reaction of acetaminophen and dopamine by the modified electrode, respectively. The linear range for acetaminophen was evaluated to be in the range of 0.4-1.8 mM with the sensitivity of 0.026 μA μM−1 and that for dopamine is 20-160 μM with the sensitivity of 0.16 μA μM−1.
    I-2. A conducting polymer-modified electrode was proposed in this work, which was fabricated by electropolymerization of 5-amino-1H-tetrazole (ATet) on a glassy carbon electrode. Electrochemical studies such as differential pulse voltammetry and chronoamperometry were performed for the evaluation of the rate constant of the catalytic reaction, the diffusion coefficient of the analyte dopamine, and the linear range for analyte determination. The film modified electrode has superior resolving power in quantitative determination from the mixture of analytes and it was found to be an efficient functionalized electrode for its sensitivity and selectivity toward the analyte of interest.
    II. The electrochemical behavior of the compositional ingredients CuCl2, AlCl3 and SeO2 individually or collectively in acidic aqueous solution was investigated on a glassy carbon electrode using the technique of cyclic voltammetry. Co-electrodeposition mechanism of CuAlSe2 was attempted to be unraveled through cyclic voltammetric study of the electroactive species. The formation of CuAlSe2 was found to be achieved by the generation of the compounds Al2Se3 and Cu2Se via reductions and/or chemical reactions of the precursors. Triethanolamine as the complexing agent was introduced in the electrodeposition of CuAlSe2 on indium doped tin oxide glass substrates in order to assist the deposition and the stoichiometric composition of CuAlSe2 thin films was fabricated. The deposited thin films were characterized by X-ray diffraction, scanning electron microscopy, UV-Vis spectrometry, Auger electron spectroscopy and energy dispersive X-ray spectrometry analysis.

    ABSTRACT i ABSTRACT (IN CHINESE) iii ACKNOWLEDGMENT v CONTENTS vii TABLES ix FIGURE CAPTIONS x ABBREVIATIONS xv Chapter 1 Introduction 1 1.1 The fundamentals 1 1.1.1 Glassy carbon electrode, indium tin oxide electrode, and potential-pH equilibrium diagrams 2 1.1.2 Chronoamperometry (CA) 8 1.1.3 Differential pulse voltammetry (DPV) 10 1.1.4 Linear sweep voltammetry (LSV) 12 1.1.5 Cyclic voltammetry (CV) 14 1.2 Mechanistic investigation on the electropolymerization of phenol red by cyclic voltammetry and the catalytic reactions toward acetaminophen and dopamine using poly(phenol red)-modified GCE 17 1.3 Electrical polymerization of a tetrazole polymer-modified electrode and its catalytic reaction toward dopamine 19 1.4 Triethanolamine-facilitated one-step electrodeposition of CuAlSe2 thin films and the mechanistic studies utilizing cyclic voltammetry 21 Chapter 2 Experimental details 24 2.1 Mechanistic investigation on the electropolymerization of phenol red by cyclic voltammetry and the catalytic reactions toward acetaminophen and dopamine using poly(phenol red)-modified GCE 24 2.1.1Chemicals and materials 24 2.1.2 Instrument and apparatus 24 2.1.3 Experimental process 25 2.1.4 Characterization 25 2.2 Electrical polymerization of a tetrazole polymer-modified electrode and its catalytic reaction toward dopamine 26 2.2.1 Chemicals and materials 26 2.2.2 Instrument and apparatus 26 2.2.3 Experimental process 27 2.2.4 Characterization 27 2.3 Triethanolamine-facilitated one-step electrodeposition of CuAlSe2 thin films and the mechanistic studies utilizing cyclic voltammetry 27 2.3.1 Chemicals and materials 28 2.3.2 Instrument and apparatus 28 2.3.3 Experimental process 28 2.3.4 Characterization 29 Chapter 3 Results and discussions 30 3.1 Mechanistic investigation on the electropolymerization of phenol red by cyclic voltammetry and the catalytic reactions toward acetaminophen and dopamine using poly(phenol red)-modified GCE 30 3.1.1 Electrochemical properties of phenol red investigated by the technique of cyclic voltammetry 30 3.1.2. Electropolymerization of phenol red on GCE 35 3.1.3. Electrochemical catalytic reactions of acetaminophen and dopamine on p-PhR GCE by cyclic voltammetry and chronoamperometry 43 3.1.4. Simultaneous quantitative determination of acetaminophen and dopamine by the technique of DPV 56 3.2 Electrical polymerization of a tetrazole polymer-modified electrode and its catalytic reaction toward dopamine 59 3.2.1. Electropolymerization of ATet on GCE and the characterization of p-ATet 59 3.2.2. Electrochemical catalytic reaction of dopamine on p-ATet GCE investigated by cyclic voltammetry and chronoamperometry 63 3.2.3. Quantitative determination of dopamine by methods of DPV and chronoamperometry 71 3.3 Triethanolamine-facilitated one-step electrodeposition of CuAlSe2 thin films and the mechanistic studies utilizing cyclic voltammetry 76 3.3.1 TEA introduced as the complexing agent in electrodeposition process 76 3.3.2 Mechanism investigation for the co-deposition of CASe by cyclic voltammetry 77 3.3.3 Electrodeposition of CASe thin films and the characterization 85 Chapter 4 Conclusions 94 REFERENCES 96

    [1] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, Journal of the Chemical Society, Chemical Communications, (1977) 578-580.
    [2] K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science, 185 (2001) 29-39.
    [3] J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Materials, 6 (2007) 497-500.
    [4] U. Lange, V.M. Mirsky, Chemiresistors based on conducting polymers: A review on measurement techniques, Analytica Chimica Acta, 687 (2011) 105-113.
    [5] G.M. Spinks, A.J. Dominis, G.G. Wallace, D.E. Tallman, Electroactive conducting polymers for corrosion control, Journal of Solid State Electrochemistry, 6 (2002) 85-100.
    [6] B. Adhikari, S. Majumdar, Polymers in sensor applications, Progress in Polymer Science, 29 (2004) 699-766.
    [7] D.D. Ateh, H.A. Navsaria, P. Vadgama, Polypyrrole-based conducting polymers and interactions with biological tissues, Journal of The Royal Society Interface, 3 (2006) 741-752.
    [8] Q.-X. Zhou, L.L. Miller, J.R. Valentine, Electrochemically controlled binding and release of protonated dimethyldopamine and other cations from poly( N-methyl-pyrrole)/polyanion composite redox polymers, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 261 (1989) 147-164.
    [9] Q. Zhou, G. Shi, Conducting polymer-based catalysts, Journal of the American Chemical Society, 138 (2016) 2868-2876.
    [10] J.A. Aristizabal, J.C. Ahumada, J.P. Soto, Electrochemical preparation and characterization of a new conducting copolymer of 2,7-carbazole and 3-octylthiophene, Polymer Bulletin, 74 (2017) 1649-1660.
    [11] G.G. Wallace, M. Smyth, H. Zhao, Conducting electroactive polymer-based biosensors, TrAC Trends in Analytical Chemistry, 18 (1999) 245-251.
    [12] K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, Progress in Photovoltaics: Research and Applications, 11 (2003) 225-230.
    [13] J.E. Jaffe, A. Zunger, Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2, Physical Review B, 28 (1983) 5822-5847.
    [14] S. Chichibu, S. Shirakata, A. Iwai, S. Matsumoto, H. Higuchi, S. Isomura, CuAlSe2 chalcopyrite epitaxial layers grown by low-pressure metalorganic chemical vapor deposition, Journal of Crystal Growth, 131 (1993) 551-559.
    [15] Y. Bharath Kumar Reddy, V. Sundara Raja, Preparation and characterization of CuIn0.3Al0.7Se2 thin films for tandem solar cells, Solar Energy Materials and Solar Cells, 90 (2006) 1656-1665.
    [16] K.G. Deepa, N. Lakshmi Shruthi, M. Anantha Sunil, J. Nagaraju, Cu(In,Al)Se2 thin films by one-step electrodeposition for photovoltaics, Thin Solid Films, 551 (2014) 1-7.
    [17] J. López-García, C. Guillén, Formation of semitransparent CuAlSe2 thin films grown on transparent conducting oxide substrates by selenization, Journal of Materials Science, 46 (2011) 7603-7610.
    [18] C.G. Zoski, Handbook of Electrochemistry, Elsevier, Amsterdam, 2007.
    [19] H.H. Thorp, Electrochemistry of proton-coupled redox reactions. Role of the electrode surface, Journal of Chemical Education, 69 (1992) 250.
    [20] S. Ranganathan, T.-C. Kuo, R.L. McCreery, Facile preparation of active glassy carbon electrodes with activated carbon and organic solvents, Analytical Chemistry, 71 (1999) 3574-3580.
    [21] G.N. Kamau, Surface preparation of glassy carbon electrodes, Analytica Chimica Acta, 207 (1988) 1-16.
    [22] H.E. Zittel, F.J. Miller, A glassy-carbon electrode for voltammetry, Analytical Chemistry, 37 (1965) 200-203.
    [23] E. Matveeva, Electrochemistry of the indium-tin oxide electrode in 1 M NaOH electrolyte, Journal of The Electrochemical Society, 152 (2005) H138-H145.
    [24] C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, N.R. Armstrong, Characterization of indium−tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule:  Effect of surface pretreatment conditions, Langmuir, 18 (2002) 450-457.
    [25] M. Pourbaix, Atlas of electrochemica equilibria in aqueous solutions, National association of corrosion engineers, Houston, Texas, USA 1974.
    [26] R.G. Compton, C.E. Banks, Understanding Voltammetry, 2nd ed., Imperial College press, London, 2011.
    [27] A.J. Bard, L.R. Faulkner, Electrochemical Methods: fundamentals and applications, 2nd ed., John Wiley & Sons Inc., 2001.
    [28] J. Wang, Analytical Electrochemistry, 2nd ed., Wiley-VCH, 2000.
    [29] P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, Journal of Chemical Education, 60 (1983) 702.
    [30] T.K. Das, S. Prusty, Review on conducting polymers and their applications, Polymer-Plastics Technology and Engineering, 51 (2012) 1487-1500.
    [31] M. Bajpai, R. Srivastava, R. Dhar, R.S. Tiwari, Review on optical and electrical properties of conducting polymers, Indian Journal of Materials Science, 2016 (2016) 8.
    [32] S. Roth, M. Filzmoser, Conducting polymers—thirteen years of polyacetylene doping, Advanced Materials, 2 (1990) 356-360.
    [33] O.A. Sadik, Bioaffinity sensors based on conducting polymers: A short review, Electroanalysis, 11 (1999) 839-844.
    [34] J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors, Nat Mater, 2 (2003) 19-24.
    [35] R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: Towards a smart biomaterial for tissue engineering, Acta Biomaterialia, 10 (2014) 2341-2353.
    [36] X. Wang, T. Wang, C. Yang, H. Li, P. Liu, Well-defined flake-like polypyrrole grafted graphene nanosheets composites as electrode materials for supercapacitors with enhanced cycling stability, Applied Surface Science, 287 (2013) 242-251.
    [37] H. Mohammad Shiri, A. Ehsani, J. Shabani Shayeh, Synthesis and highly efficient supercapacitor behavior of a novel poly pyrrole/ceramic oxide nanocomposite film, RSC Advances, 5 (2015) 91062-91068.
    [38] A. Ehsani, M.G. Mahjani, F. Babaei, H. Mostaanzadeh, Physioelectrochemical and DFT investigation of metal oxide/p-type conductive polymer nanoparticles as an efficient catalyst for the electrocatalytic oxidation of methanol, RSC Advances, 5 (2015) 30394-30404.
    [39] M.E. Abdelhamid, A.P. O'Mullane, G.A. Snook, Storing energy in plastics: a review on conducting polymers and their role in electrochemical energy storage, RSC Advances, 5 (2015) 11611-11626.
    [40] P. Sengodu, A.D. Deshmukh, Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review, RSC Advances, 5 (2015) 42109-42130.
    [41] A.E.G. Cass, G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D.L. Scott, A.P.F. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Analytical Chemistry, 56 (1984) 667-671.
    [42] J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, Journal of the American Chemical Society, 125 (2003) 2408-2409.
    [43] P. Kalimuthu, S.A. John, Modification of electrodes with nanostructured functionalized thiadiazole polymer film and its application to the determination of ascorbic acid, Electrochimica Acta, 55 (2009) 183-189.
    [44] M. Skompska, M.J. Chmielewski, A. Tarajko, Poly(1,8-diaminocarbazole) – A novel conducting polymer for sensor applications, Electrochemistry Communications, 9 (2007) 540-544.
    [45] N.C. Kekec, F.E. Kanik, Y.A. Udum, C.G. Hizliates, Y. Ergun, L. Toppare, A novel conducting polymer based platform for ethanol sensing, Sensors and Actuators, B: Chemical, 193 (2014) 306-314.
    [46] P. Kalimuthu, S. Abraham John, Selective determination of norepinephrine in the presence of ascorbic and uric acids using an ultrathin polymer film modified electrode, Electrochimica Acta, 56 (2011) 2428-2432.
    [47] A. Ehsani, Influence of counter ions in electrochemical properties and kinetic parameters of poly tyramine electroactive film, Progress in Organic Coatings, 78 (2015) 133-139.
    [48] S. Nambiar, J.T.W. Yeow, Conductive polymer-based sensors for biomedical applications, Biosensors and Bioelectronics, 26 (2011) 1825-1832.
    [49] P.C. Pandey, D.S. Chauhan, V. Singh, Poly(indole-6-carboxylic acid) and tetracyanoquinodimethane-modified electrode for selective oxidation of dopamine, Electrochimica Acta, 54 (2009) 2266-2270.
    [50] Q. Xu, L.-l. Chen, G.-j. Lu, X.-Y. Hu, H.-b. Li, L.-.-l. Ding, Y. Wang, Electrochemical preparation of poly(bromothymol blue) film and its analytical application, Journal of Applied Electrochemistry, 41 (2011) 143-149.
    [51] S. Eddy, K. Warriner, I. Christie, D. Ashworth, C. Purkiss, P. Vadgama, The modification of enzyme electrode properties with non-conducting electropolymerised films, Biosensors and Bioelectronics, 10 (1995) 831-839.
    [52] G. Yang, X. Qu, M. Shen, C. Wang, Q. Qu, X. Hu, Electrochemical behavior of lead(II) at poly(phenol red) modified glassy carbon electrode, and its trace determination by differential pulse anodic stripping voltammetry, Microchimica Acta, 160 (2008) 275-281.
    [53] A.-M. Spehar-Délèze, S. Anastasova, P. Vadgama, Electropolymerised phenolic films as internal barriers for oxidase enzyme biosensors, Electroanalysis, 26 (2014) 1335-1344.
    [54] Z. Galus, Fundamentals of Electrochemical Analysis, 2nd ed., Ellis Horwood Limited, 1994.
    [55] F. Tadayon, S. Vahed, H. Bagheri, Au-Pd/reduced graphene oxide composite as a new sensing layer for electrochemical determination of ascorbic acid, acetaminophen and tyrosine, Materials Science and Engineering C, 68 (2016) 805-813.
    [56] C.J. Locke, S.A. Fox, G.A. Caldwell, K.A. Caldwell, Acetaminophen attenuates dopamine neuron degeneration in animal models of Parkinson's disease, Neuroscience Letters, 439 (2008) 129-133.
    [57] D.S. Maharaj, K.S. Saravanan, H. Maharaj, K.P. Mohanakumar, S. Daya, Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats, Neurochemistry International, 44 (2004) 355-360.
    [58] S.J. Chinta, J.K. Andersen, Dopaminergic neurons, The International Journal of Biochemistry & Cell Biology, 37 (2005) 942-946.
    [59] E. Dragicevic, J. Schiemann, B. Liss, Dopamine midbrain neurons in health and Parkinson's disease: Emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels, Neuroscience, 284 (2015) 798-814.
    [60] H. Bernheimer, W. Birkmayer, O. Hornykiewicz, K. Jellinger, F. Seitelberger, Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations, Journal of the Neurological Sciences, 20 (1973) 415-455.
    [61] C. Wang, J. Du, H. Wang, C.e. Zou, F. Jiang, P. Yang, Y. Du, A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid, Sensors and Actuators B: Chemical, 204 (2014) 302-309.
    [62] J. Wang, B. Yang, H. Wang, P. Yang, Y. Du, Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode, Analytica Chimica Acta, 893 (2015) 41-48.
    [63] J.L. Bredas, R. Silbey, D.S. Boudreaux, R.R. Chance, Chain-length dependence of electronic and electrochemical properties of conjugated systems: Polyacetylene, polyphenylene, polythiophene, and polypyrrole, Journal of the American Chemical Society, 105 (1983).
    [64] F.L. Lu, F. Wudl, M. Nowak, A.J. Heeger, Phenyl-capped octaaniline (COA): an excellent model for polyaniline, Journal of the American Chemical Society, 108 (1986) 8311-8313.
    [65] J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Electrochemistry of conducting polymers—persistent models and new concepts, Chemical Reviews, 110 (2010) 4724-4771.
    [66] K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors, The Journal of Physical Chemistry C, 114 (2010) 8062-8067.
    [67] C. Hu, S. He, S. Jiang, S. Chen, H. Hou, Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors, RSC Adv., 5 (2015) 14441-14447.
    [68] R. Kirankumar, T. Tsuda, C.-Y. Chen, C.-Y. Lu, S. Kuwabata, P.-Y. Chen, Multifunctional electropolymerizable carbazole-based ionic liquids, RSC Adv., 6 (2016) 15735-15744.
    [69] S. Yang, G. Li, J. Zhao, H. Zhu, L. Qu, Electrochemical preparation of Ag nanoparticles/poly(methylene blue) functionalized graphene nanocomposite film modified electrode for sensitive determination of rutin, Journal of Electroanalytical Chemistry, 717 (2014) 225-230.
    [70] W. Chen, X. Lin, H. Luo, L. Huang, Electrocatalytic oxidation and determination of norepinephrine at poly(cresol red) modified glassy carbon electrode, Electroanalysis, 17 (2005) 941-945.
    [71] K. Reddaiah, T.M. Reddy, P. Raghu, Electrochemical investigation of L-dopa and simultaneous resolution in the presence of uric acid and ascorbic acid at a poly (methyl orange) film coated electrode: A voltammetric study, Journal of Electroanalytical Chemistry, 682 (2012) 164-171.
    [72] P.V. Narayana, T.M. Reddy, P. Gopal, G.R. Naidu, Electrochemical sensing of paracetamol and its simultaneous resolution in the presence of dopamine and folic acid at a multi-walled carbon nanotubes/poly(glycine) composite modified electrode, Anal. Methods, 6 (2014) 9459-9468.
    [73] P. Kalimuthu, S.A. John, Nanostructured electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole on glassy carbon electrode for the selective determination of l-cysteine, Electrochemistry Communications, 11 (2009) 367-370.
    [74] H. Li, H. Wen, S. Calabrese Barton, NADH oxidation catalyzed by electropolymerized azines on carbon nanotube modified electrodes, Electroanalysis, 24 (2012) 398-406.
    [75] F. Qu, M. Yang, J. Jiang, K. Feng, G. Shen, R. Yu, Novel poly (neutral red) nanowires as a sensitive electrochemical biosensing platform for hydrogen peroxide determination, Electrochemistry Communications, 9 (2007) 2596-2600.
    [76] B. Rech, H. Wagner, Potential of amorphous silicon for solar cells, Applied Physics A: Materials Science and Processing, 69 (1999) 155-167.
    [77] M. Kaelin, D. Rudmann, A.N. Tiwari, Low cost processing of CIGS thin film solar cells, Solar Energy, 77 (2004) 749-756.
    [78] D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P.P. Grand, M. Benfarah, P. Mogensen, O. Kerrec, Chalcopyrite thin film solar cells by electrodeposition, Solar Energy, 77 (2004) 725-737.
    [79] U.P. Singh, S.P. Patra, Progress in polycrystalline thin-film Cu(In,Ga) solar cells, International Journal of Photoenergy, 2010 (2010) 468147.
    [80] K.-C. Huang, C.-L. Liu, P.-K. Hung, M.-P. Houng, Effect of Al and In molar ratio in solutions on the growth and microstructure of electrodeposition Cu(In,Al)Se2 films, Applied Surface Science, 273 (2013) 723-729.
    [81] R.S. Kumar, A. Sekar, N.V. Jaya, S. Natarajan, S. Chichibu, Structural studies of CuAlSe2 and CuAlS2 chalcopyrites at high pressures, Journal of Alloys and Compounds, 312 (2000) 4-8.
    [82] L. Barkat, M. Morsli, C. Amory, S. Marsillac, A. Khelil, J.C. Bernde, C.E. Moctar, Study on the fabrication of n-type CuAlSe2 thin films, Thin Solid Films, 431–432 (2003) 99-104.
    [83] Y.B.K. Reddy, V.S. Raja, Effect of Cu/Al ratio on the properties of CuAlSe2 thin films prepared by co-evaporation, Materials Chemistry and Physics, 100 (2006) 152-157.
    [84] N. Kuroishi, K. Mochizuki, K. Kimoto, Surface oxidation of CVT-grown CuAlSe2, Materials Letters, 57 (2003) 1949--1954.
    [85] S. Chichibu, A. Iwai, S. Matsumoto, H. Higuchi, LP-MOCVD growth of CuAlSe2 epitaxial layers, Journal of Crystal Growth, 126 (1993) 635-642.
    [86] J. López-García, C. Guillén, Formation of semitransparent CuAlSe2 thin films grown on transparent conducting oxide substrates by selenization, Journal of Materials Science, 46 (2011) 7603-7610.
    [87] K.K. Masumoto, M. Katsumi, Katashi, Heteroepitaxial growth of chalcopyrite-type CuAlSe2 compound semiconductor by molecular beam epitaxy, Japanese Journal of Applied Physics, 32 (1993) 147.
    [88] M. Thirumoorthy, K. Ramesh, K.R. Murali, Characteristics of pulse electrodeposited CuAlSe2 films, Journal of Materials Science: Materials in Electronics, 26 (2015) 3657-3663.
    [89] R.N. Bhattacharya, Solution growth and electrodeposited CuInSe2 thin films, Journal of The Electrochemical Society, 130 (1983) 2040-2042.
    [90] Z. Zainal, N. Saravanan, H.L. Mien, Electrodeposition of nickel selenide thin films in the presence of triethanolamine as a complexing agent, Journal of Materials Science: Materials in Electronics, 16 (2005) 111-117.
    [91] J. Singh, D. Prasher, K. Nigam, P. Rajaram, Growth and characterization of pulse electrodeposited CuAlSe2 thin films, AIP Conference Proceedings, 1536 (2013).
    [92] S.M. Pawar, B.S. Pawar, A.V. Moholkar, D.S. Choi, J.H. Yun, J.H. Moon, S.S. Kolekar, J.H. Kim, Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application, Electrochimica Acta, 55 (2010) 4057--4061.
    [93] T.M. Harris, J.S. Clair, Testing the role of metal hydrolysis in the anomalous electrodeposition of Ni‐Fe alloys, Journal of The Electrochemical Society, 143 (1996) 3918-3922.
    [94] L.C.a. Melo, The influence of citrate and tartrate on the electrodeposition and surface morphology of Cu-Ni layers, Journal of Applied Electrochemistry, 41 (2011) 415-422.
    [95] C.-M. Chang, M.-T. Hsieh, W.-C. Kang, T.-J. Whang, Study of the co-electrodeposited Pd-Ni alloy thin film and its performance on ethanol electro-oxidation, Journal of The Electrochemical Society, 161 (2014) D552-D557.
    [96] D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2005.
    [97] A.N. Niztayev, W.R. Hagen, Unprecedented stable aqueous semiquinone methide radical formation interferes with adsorptive cathodic stripping voltammetry of cobalt methyl thymol blue, Talanta, 67 (2005) 597-602.
    [98] S.W. Feldberg, I. Rubinstein, Unusual quasi-reversibility (UQR) or apparent non-kinetic hysteresis in cyclic voltammetry, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 240 (1988) 1-15.
    [99] J.K. Senne, L.W. Marple, Electrochemical reduction of phenol red, Analytical Chemistry, 42 (1970) 1147-1150.
    [100] P.J. Kudirka, R.S. Nicholson, Experimental evaluation of cyclic voltammetry theory for disproportionation reactions, Analytical Chemistry, 44 (1972) 1786-1794.
    [101] D.D. Long, K.A. Marx, T. Zhou, Amperometric hydrogen peroxide sensor electrodes coated with electropolymerized tyrosine derivative and phenolic films, Journal of Electroanalytical Chemistry, 501 (2001) 107-113.
    [102] M. Ghaani, N. Nasirizadeh, S.A. Yasini Ardakani, F.Z. Mehrjardi, M. Scampicchio, S. Farris, Development of an electrochemical nanosensor for the determination of gallic acid in food, Anal. Methods, 8 (2016) 1103-1110.
    [103] T.-Y. Huang, C.-W. Kung, H.-Y. Wei, K.M. Boopathi, C.-W. Chu, K.-C. Ho, A high performance electrochemical sensor for acetaminophen based on a rGO-PEDOT nanotube composite modified electrode, Journal of Materials Chemistry A, 2 (2014) 7229-7237.
    [104] A. Ehsani, M.G. Mahjani, M. Jafarian, A. Naeemy, Electrosynthesis of polypyrrole composite film and electrocatalytic oxidation of ethanol, Electrochimica Acta, 71 (2012) 128-133.
    [105] M. Behpour, S. Masoum, M. Meshki, Determination of trace amounts of thymol and caffeic acid in real samples using a graphene oxide nanosheet modified electrode: application of experimental design in voltammetric studies, RSC Advances, 4 (2014) 14270-14280.
    [106] C.P. Andrieux, J.M. Saveant, Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 93 (1978) 163-168.
    [107] C.L.L. Pham, S.L. Leong, F.E. Ali, V.B. Kenche, A.F. Hill, S.L. Gras, K.J. Barnham, R. Cappai, Dopamine and the dopamine oxidation product 5,6-dihydroxylindole promote distinct on-pathway and off-pathway aggregation of α-synuclein in a pH-dependent manner, Journal of Molecular Biology, 387 (2009) 771-785.
    [108] D. Nematollahi, H. Shayani-Jam, M. Alimoradi, S. Niroomand, Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes, Electrochimica Acta, 54 (2009) 7407-7415.
    [109] A. Hajian, J. Ghodsi, A. Afraz, O. Yurchenko, G. Urban, Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor, Materials Science and Engineering: C, 69 (2016) 122-127.
    [110] S. Khazalpour, D. Nematollahi, Electrochemical study of Alamar Blue (resazurin) in aqueous solutions and room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate at a glassy carbon electrode, RSC Advances, 4 (2014) 8431-8438.
    [111] M. Bisaglia, S. Mammi, L. Bubacco, Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein., The Journal of biological chemistry, 282 (2007) 15597-15605.
    [112] S. Meenakshi, K. Pandian, Simultaneous voltammetry detection of dopamine and uric acid in pharmaceutical products and urine samples using ferrocene carboxylic acid primed nanoclay modified glassy carbon electrode, Journal of The Electrochemical Society, 163 (2016) B543-B555.
    [113] A.C.F. Ribeiro, M.C.F. Barros, L.M.P. Veríssimo, C.I.A.V. Santos, A.M.T.D.P.V. Cabral, G.D. Gaspar, M.A. Esteso, Diffusion coefficients of paracetamol in aqueous solutions, The Journal of Chemical Thermodynamics, 54 (2012) 97-99.
    [114] H. Beitollahi, I. Sheikhshoaie, Novel nanostructure-based electrochemical sensor for simultaneous determination of dopamine and acetaminophen, Materials Science and Engineering: C, 32 (2012) 375-380.
    [115] H. Razmi, M. Agazadeh, B. Habibi-A, Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthesized by electroless procedure, Journal of Electroanalytical Chemistry, 547 (2003) 25-33.
    [116] D.T. Sawyer, A. Sobkowiak, J.L. Roberts, Jr., Electrochemistry for Chemists, (1995).
    [117] J.A. Joule, K. Mills, Heterocycles with More than Two Heteroatoms: Higher Azoles (5-Membered) and Higher Azines (6-Membered), in: Heterocyclic Chemistry at a Glance, John Wiley & Sons, Ltd, 2012, pp. 132-142.
    [118] S. Antoniadou, A.D. Jannakoudakis, E. Theodoridou, Electrocatalytic reactions on carbon fibre electrodes modified by hemine II. Electro-oxidation of hydrazine, Synthetic Metals, 30 (1989) 295-304.
    [119] M. Taei, H. Hadadzadeh, F. Hasanpour, N. Tavakkoli, M.H. Dolatabadi, Simultaneous electrochemical determination of ascorbic acid, epinephrine, and uric acid using a polymer film-modified electrode based on Au nanoparticles/poly(3,3',5,5'-tetrabromo-m-cresolsulfonphthalein), Ionics, 21 (2015) 3267-3278.
    [120] M. Kemell, M. Ritala, H. Saloniemi, Leskel, One‐Step Electrodeposition of Cu2 − x Se and CuInSe2 Thin Films by the Induced Co‐deposition Mechanism, Journal of The Electrochemical Society, 147 (2000) 1080-1087.
    [121] J.-L. Burgot, Ionic Equilibria in Analytical Chemistry, Springer Science + Business Media LLC, 2012.
    [122] R. Tauler, E. Casassas, M.J.A. Rainer, B.M. Rode, The complex formation of Cu(II) with triethanolamine in aqueous solution, Inorganica Chimica Acta, 105 (1985) 165-170.
    [123] C.W. Davies, B.N. Patel, Complexes of the cupric ion with mono-, di-, and tri-ethanolamine, Journal of the Chemical Society A: Inorganic, Physical, Theoretical, (1968) 1824.
    [124] C. Pai, C.-J. Su, Y.-T. Hsieh, P.-Y. Chen, I.W. Sun, Voltammetric Study of Selenium and Two-Stage Electrodeposition of Photoelectrochemically Active Zinc Selenide Semiconductor Films in Ionic Liquid Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride, Journal of The Electrochemical Society, 162 (2015) D243-D249.
    [125] P. Carbonnelle, L. Lamberts, Electrochemical study of the copper-selenium system using carbon paste electrode, Electrochimica Acta, 37 (1992) 1321-1325.
    [126] P. Carbonnelle, L. Lamberts, A voltammetric study of the electrodeposition chemistry of the Cu + Se system, Journal of Electroanalytical Chemistry, 340 (1992) 53-71.
    [127] A.M. Espinosa, M.L. Tascn, M.D. Vzquez, P.S. Batanero, Electroanalytical study of selenium(+IV) at a carbon paste electrode with electrolytic binder and electroactive compound incorporated, Electrochimica Acta, 37 (1992) 1165-1172.
    [128] L. Kaupmees, M. Altosaar, O. Volubujeva, E. Mellikov, Study of composition reproducibility of electrochemically co-deposited CuInSe2 films onto ITO, Thin Solid Films, 515 (2007) 5891-5894.
    [129] T.-J. Whang, M.-T. Hsieh, H.-H. Chen, Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles, Applied Surface Science, 258 (2012) 2796-2801.
    [130] T.-J. Whang, M.-T. Hsieh, J.-M. Tsai, S.-J. Lee, Lactic acid aided electrochemical deposition of c-axis preferred orientation of zinc oxide thin films: Structural and morphological features, Applied Surface Science, 257 (2011) 9539-9545.
    [131] S. Nakamura, S. Sugawara, A. Hashimoto, A. Yamamoto, Composition control of electrodeposited Cu−In−Se layers for thin film CuInSe2 preparation, Solar Energy Materials and Solar Cells, 50 (1998) 25-30.
    [132] K. Nose, T. Omata, O.Y.M. Shinya, Colloidal synthesis of ternary copper indium diselenide quantum dots and their optical properties, Journal of Physical Chemistry C, 113 (2009) 3455-3460.

    無法下載圖示 校內:2022-06-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE