簡易檢索 / 詳目顯示

研究生: 陳彥芳
Chen, Yang-Fang
論文名稱: 適用於未知連續奇異系統的一種基於改良型函數觀測器之等效輸入干擾估測器
A Modified Functional Observer-based EID Estimator for Unknown Analog Singular Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 61
中文關鍵詞: 奇異系統廣義黎卡迪方程式輸入-輸出直接傳輸項函數觀測器觀 測/卡爾曼濾波器鑑別等效輸入干擾干擾估測器
外文關鍵詞: Singular systems, generalized Riccati equation, input-output direct feed-through term, functional observer, observer/Kalman filter identification, equivalent input disturbance (EID), disturbance estimator
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出適用於具有未知輸入輸出擾動之未知連續奇異系統的一種基於觀測卡爾/曼濾波器鑑別法之線性二次類比追蹤器,以及一種基於改良型函數觀測器之等效干擾估測器。首先,利用奇異系統模型轉換演算法得到一個用於模擬連續線性奇異系統對任意輸入之時間響應之等效數學模型。其次,對一個未知奇異系統,建立一種基於離線觀測/卡爾曼濾波器鑑別法之具有狀態負回授增益和正回授增益的最佳線性二次類比追蹤器。再者,針對具有未知匹配/不匹配輸入及輸出干擾之嚴格真分正規系統的一種等效輸入干擾估測器之設計方法,將延伸到真分正規系統。最後,將新提出之適用於真分系統之改良型函數觀測器用於估測奇異系統之未知等效輸入干擾。此外,運用新提出之等效輸入干擾估測方法可排除未知擾動之維度限制。

    This thesis presents an observer/Kalman filter identification (OKID) method-based linear quadratic analog tracker (LQAT) and a modified functional observer-based equivalent input disturbance (EID) estimator for unknown square/non-square singular systems with unknown input and output disturbances. To begin with, an equivalent mathematical model of the singular system for simulating the time response of continuous linear singular systems to arbitrary inputs is presented by the model conversion method. Then, for an unknown singular system, a linear quadratic analog tracker with state-feedback gain and feed-forward gain is constructed based on the off-line OKID method. Furthermore, a design methodology of the EID estimator for the strictly proper regular system with unknown matched/mismatched input and output disturbances is extended to a proper regular system. Finally, the newly presented modified functional observer for the proper systems is used to estimate the unknown EID of the singular systems. Moreover, the constraints on the dimension of unknown disturbances is eliminated by using the new EID estimation skill.

    中文摘要 I Abstract II Acknowledgement III List of Contents IV List of Figures VI Chapter 1 Introduction 1 Chapter 2 Model Conversion and Optimal Linear Quadratic Tracker Design for Singular Systems 5 2.1. Model conversion for singular systems 6 2.2. Further notes on solving generalized algebraic Riccati equation for singular systems 9 2.3. Optimal linear quadratic analog tracker for continuous-time singular systems 12 Chapter 3 State-space Structure of the Observer and the Net EID Estimator 13 3.1. Equivalent input disturbance (EID) of a system with unknown input and output disturbances 14 3.2. State-space structure of the observer and the net EID estimator 16 3.3. Stability analysis in frequency domain 17 Chapter 4 Modified Functional Observer with Unknown Input 22 4.1. Introduction on the functional observers 23 4.2. Problem statement 23 4.3. Existence conditions 25 Chapter 5 Design Procedure of the Unknown Input Linear Functional Observer for the Unknown Perturbed Singular Systems 31 5.1. Part 1: Observer/Kalman filter identification on the unknown singular system 32 5.2. Part 2: Observer design for noisy singular system 33 5.3. Part 3: Linear functional observer design 35 Chapter 6 Illustrative Examples 38 Chapter 7 Conclusion 53 Reference 54 Appendix 56 Appendix A A preliminary feedback design method to eliminate the impulsive mode 56 Appendix B Some proofs of functional observer-based EID 59

    [1] Anderson, B.D. and Moore, J.B., Optimal Control: Linear Quadratic Methods, Courier Corporation, 2007.
    [2] Chen, J., Patton, R.J., and Zhang, H.-Y., “Design of unknown input observers and robust fault detection filters,” International Journal of control, vol. 63, no. 1, pp. 85-105, 1996.
    [3] Chen, M.-S. and Chen, C.-C., “Unknown input observer for linear non-minimum phase systems,” Journal of the Franklin Institute, vol. 347, no. 2, pp. 577-588, 2010.
    [4] Cherrier, E., Boutayeb, M., and Ragot, J., “Observers-based synchronization and input recovery for a class of nonlinear chaotic models,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 9, pp. 1977-1988, 2006.
    [5] Corless, M. and Tu, J., “State and input estimation for a class of uncertain systems,” Automatica, vol. 34, no. 6, pp. 757-764, 1998.
    [6] Ebrahimzadeh, F., Tsai, J.S.-H., Liao, Y.T., Chung, M.-C., Guo, S.-M., Shieh, L.-S., and Wang, L., “A generalised optimal linear quadratic tracker with universal applications–part 1: continuous-time systems,” International Journal of Systems Science, vol. 48, no. 2, pp. 376-396, 2017.
    [7] Gao, Z. and Ho, D.W., “State/noise estimator for descriptor systems with application to sensor fault diagnosis,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1316-1326, 2006.
    [8] Huang, C.-C., Tsai, J.S.-H., Guo, S.-M., Sun, Y.-J., and Shieh, L.-S., “Solving algebraic Riccati equation for singular system based on matrix sign function,” Int. J. Innov. Comput. Inform. Control, vol. 9, pp. 2771-2788, 2013.
    [9] Juang, J.-N., Applied system identification, 1994.
    [10] Liao, T.-L. and Huang, N.-S., “An observer-based approach for chaotic synchronization with applications to secure communications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 46, no. 9, pp. 1144-1150, 1999.
    [11] Liu, R.-J., Liu, G.-P., Wu, M., and Nie, Z.-Y., “Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach,” Journal of the Franklin Institute, vol. 351, no. 6, pp. 3364-3377, 2014.
    [12] Luenberger, D., “An introduction to observers,” IEEE Transactions on automatic control, vol. 16, no. 6, pp. 596-602, 1971.
    [13] Moore, J., Linear Optimal Control, Englewood Cliffs, Prentice Hall, NJ, 1971.
    [14] Radke, A. and Gao, Z., “A survey of state and disturbance observers for practitioners,” in Proceedings of the 2006 American Control Conference, IEEE, Minneapolis, Minnesota, USA, 2006.
    [15] Rao, C.R. and Mitra, S.K., “Generalized inverse of a matrix and its applications,” in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics, The Regents of the University of California, Berkeley, Calif, 1972.
    [16] Sage, A.P. and White, C.C., Optimum Systems Control, Prentice Hall, 1977.
    [17] She, J.-H., Fang, M., Ohyama, Y., Hashimoto, H., and Wu, M., “Improving disturbance-rejection performance based on an equivalent-input-disturbance approach,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 380-389, 2008.
    [18] Shieh, S.L., Dib, M.H., and Sekar, G., “Continuous-time quadratic regulators and pseudo-continuous-time quadratic regulators with pole placement in a specific region,” IEE Proceedings D (Control Theory and Applications), vol. 134, no. 5, pp. 338-346, 1987.
    [19] Tang, D., Chen, L., and Hu, E., “A novel unknown-input estimator for disturbance estimation and compensation,” in Proceedings of Australasian Conference on Robotics and Automation, The University of Melbourne, Melbourne, Australlia, 2014.
    [20] Termehchy, A. and Afshar, A., “A novel design of unknown input observer for fault diagnosis in non-minimum phase systems,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 8552-8557, 2014.
    [21] Trinh, H. and Fernando, T., Functional Observers for Dynamical Systems, vol. 420, Springer Science & Business Media, 2011.
    [22] Tsai, J.S.-H., Chen, C.-H., Lin, M.-J., Guo, S.-M., and Shieh, L.-S., “Novel quadratic tracker and observer for the equivalent model of the sampled-data linear singular system,” Applied Mathematical Sciences, vol. 6, no. 68, pp. 3381-3409, 2012.
    [23] Tsai, J.S.-H., Ebrahimzadeh, F., Lin, Y.-Y., Guo, S.-M., Shieh, L.-S., and Juang, Y.-T., “An efficient robust servo design for non-minimum phase discrete-time systems with unknown matched/mismatched input disturbances,” Automation, Control and Intelligent Systems, vol. 5, no. 2, pp. 14-28, 2017.
    [24] Tsai, J.S.-H., Wang, H.-H., Guo, S.-M., Shieh, L.-S., and Canelon, J.I., “A case study on the universal compensation-improvement mechanism: A robust PID filter-shaped optimal PI tracker for systems with/without disturbances,” Journal of the Franklin Institute, vol. 355, no. 8, pp. 3583-3618, 2018.
    [25] Tsai, J.S.H., Wang, C.T., and Shieh, L.S., “Model conversion and digital redesign of singular systems,” Journal of the Franklin Institute, vol. 330, no. 6, pp. 1063-1086, 1993.
    [26] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, vol. 40, Prentice hall New Jersey, 1996.

    無法下載圖示 校內:2023-07-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE