簡易檢索 / 詳目顯示

研究生: 李冠宇
Li, Kuan-Yu
論文名稱: 中性點電位平衡之多階變流器太陽能光電系統
Neutral-Point Potential Balanced Multilevel Inverter for Solar PV System
指導教授: 楊宏澤
Yang, H.T.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 89
中文關鍵詞: 太陽能電池發電系統總諧波失真五階變流器
外文關鍵詞: Solar PV Generation System, Total Harmonic Distortion, Five-level Inverter
相關次數: 點閱:106下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計及製作太陽能電池發電系統市電併聯轉換器。系統架構可分為前級轉換器與後級變流器兩部分,系統架構之輸入源為太陽能電池,利用前級轉換器進行太陽能電池之最大功率追蹤,並透過後級變流器將直流電源轉換為交流電源且將此電能饋入市電,系統利用變流器之功因修正,以獲得接近單位功因之輸出。
    前級平衡電容式升壓轉換器具傳統其他升壓式轉換器兩倍之升壓效果,並於電路上加入零電壓切換技術,不僅可降低功率開關於導通區間之切換損失,同時也使功率二極體達到零電流截止之效用,藉以提升整體系統之效率。後級五階變流器輸出電壓準位乃由輸入直流電壓準位經功率開關切換而得,故一旦輸入端電壓準位不平衡時,將使輸出電壓準位失真。為改善此一缺點,本論文利用所提出之平衡電容式升壓轉換器本身自我平衡之輸出特性,平衡後級變流器之輸入電壓,使變流器可以利用其開關切換控制,輸出一平衡五階之電位,使系統輸出獲得較佳之電壓與電流諧波因數。
    為驗證所提系統有效性,本文於系統輸出功率600W額定下,分別進行獨立負載與市電併聯進行模擬與實作測試。於獨立負載中,五階全橋變流器輸出電壓總諧波失真率分別為2.67%,系統整體效率為87.2%。市電併聯運轉模式下,系統輸出功率因數為99.2%,因市電電壓諧波量高致本文系統之電流諧波因數達5.7%,系統整體效率為85.3%。

    The thesis focuses on design and implementation of a solar photovoltaic (PV) generation system. The system architecture is divided into a front-end boost converter and a back-end multilevel inverter. With source of PV modules, the front-end converter conducts maximal power point tracking (MPPT) control, as the back-end inverter feeds the DC power into the grid. Meanwhile, power factor correction (PFC) of the inverter output is employed to obtain near-unity power factor.
    The front-end converter not only possesses the voltage doubling function as compared to the traditional Boost converter, but uses zero-voltage switching techniques to reduce the switching losses of main switch and turn off the diode at zero current. The overall system efficiency can thus be enhanced. In the proposed system, the output voltage of the back-end five-level inverter is obtained by switching the output voltages of the front-end converter. Once the output voltages of the front-end converter are not balanced, the five-level output voltage would be distorted. To avoid the disadvantages thus incurred, a self-balanced capacitive Boost converter is proposed to balance the voltages for the inverter input. Less harmonic contents in the inverter output can therefore be achieved.
    To verify the effectiveness of the proposed system, with power rating of 600W, the system is practically tested for off-grid and on-grid operations. In the testing of off-grid operation, the total harmonic distortion (THD) of the proposed five-level full-bridge inverter output voltage is 2.67%, and the overall efficiency of the system is 87.2%. In the testing of on-grid operation, the power factor of the system output is 99.2%, and the THD is 5.7% due to higher THD of the grid voltage with the overall efficiency of 85.3%.

    目 錄 摘 要 I Abstract III 誌 謝 V 目 錄 VI 圖目錄 X 表目錄 XV 第一章 緒論 1 1-1 研究背景及動機 1 1-2 文獻回顧 2 1-3 研究架構與方法 4 1-4 本文貢獻 5 1-5 論文組織 6 第二章 太陽能電池發電系統 7 2-1 本章介紹 7 2-2 太陽能電池簡介 7 2-2-1 太陽能電池發電原理 8 2-2-2 太陽能電池等效電路 9 2-2-3 太陽能電池之輸出特性 11 2-3 多階變流器架構 15 2-3-1 多階變流器基本概念 15 2-3-2 單相二極體箝位五階控制 19 2-3-3 單相飛輪電容式五階控制 21 2-3-4 單相串接全橋五階控制 23 第三章 本文所提系統架構與動作原理 26 3-1 本章介紹 26 3-2 系統架構 26 3-3 直流-直流平衡電容式升壓轉換器 27 3-3-1 電路架構穩態分析 28 3-3-2 電路架構設計 37 3-4 直流-交流全橋五階變流器 39 3-4-1 電路架構分析 39 3-4-2 脈波寬度調變原理 42 3-4-3 電路架構設計 45 3-5 最大功率追蹤控制原理與方式 47 3-6 週邊電路設計與系統控制流程 49 3-6-1 功率開關驅動電路 50 3-6-2 電壓回授電路 51 3-6-3 電流回授電路 53 3-6-4 零交越偵測電路 55 3-6-5 程式規劃與系統流程 56 3-7 獨立發電模式 57 3-8 市電併聯模式 60 3-9 本章結論 63 第四章 系統模擬與實測結果 64 4-1 本章介紹 64 4-2 系統硬體電路規格 64 4-3 系統模擬數值與結果 67 4-4 太陽能電池發電系統實測結果 70 4-5 本章結論 82 第五章 結論與未來研究方向 83 5-1 結論 83 5-2 未來研究方向 83 參考文獻 85

    參考文獻
    [1]郭博堯,京都議定書的爭議與妥協,2001,http://www.npf.org.tw/。
    [2]M. Rogol, S. Doi, and Anthony Wilkinson, “Sun Screen Investment Opportunities in Solar Power,” Solar Power Sector Outlook, CLSA Asia-Pacific Markets, 2004.
    [3]S. R. Bull, “Renewable Energy Today and Tomorrow,” IEEE Proceedings, Vol. 89, No. 8, pp.1216-1226, August 2001.
    [4]H. Falk, “Prolog to Renewable Energy Today and Tomorrow,” IEEE Proceedings, Vol. 89, No. 8, pp.1214-1215, August 2001.
    [5]胡忠興,太陽能發電系統之裝置與併聯技術,電機月刊,第十二卷第二期,130-145頁,民國91年2月。
    [6]郭禮青,太陽光電能技術開發研究規劃,電力電子期刊,第52 期, pp.1-15,民國88年8月。
    [7]蘇華宗,澎湖中屯風力發電介紹,電機技師,第93 期,39-48頁,民國91年6月。
    [8]呂文隆,蓄電池儲能系統之設計與製作,國立台灣工業技術學院電機工程技術研究所,碩士學位論文,民國81年。
    [9]S. J. Chiang, K. T. Chang, and C. Y. Yen, “Residential Photovoltaic Energy Storage System,” IEEE Transactions on Industrial Electronics, Vol. 45, No. 3, pp.385-394, June 1998.
    [10]J. H. R. Enslin and D. B. Snyman,“Combined Low-Cost, High-Efficient Inverter, Peak Power Tracker and Regulator for PV Application,” IEEE Transaction on Power Electronics, Vol. 6, No. 1, pp.73-82, January 1991.
    [11]A. Ueda, K. Harada, Y. Ishihara, T. Todaka, M. Yukawa, and H. Yokouchi, “Calculating Method of the Capacity of Photovoltaic Array and Battery Considering Power Failure Probability in Stand-Alone PV Systems,”Proceedings of the IEEE Photovoltaic Specialists Conference, Vol. 1, pp.1184-1187, December 1994.
    [12]M. S. Taha and K. Suresh, “Maximum Power Point Tracking Inverter for Photovoltaic Source Pumping Application,” Processings of the IEEE International Conference on Power Electronics, Drives and Energy System for Industrial Growth, Vol. 2, pp. 883-886, January 1996.
    [13]M. Chardokar, D. Divan, and R. Adapa, “Control of Parallel Connected Inverters in Stand-Alone AC Supply System,” IEEE Transactions on Industrial Applications, Vol. 29, pp. 136-143, January 1993.
    [14]P. Bolduc, D. Lehmicke, and J. Smith, “Performance of a Grid-connected PV System with Energy Storage,” Proceedings of the IEEE Photovoltaic Specialists Conference, pp. 1159-1162, 1993.
    [15]S. Sopitpan, P. Changmoang and S. Panyakeow, “PV Systems With/without Grid Back-up for Housing Applications,” Proceedings of the IEEE Photovoltaics Specialists Conference, pp.1687-1690, 2000.
    [16]N. Patcharaprakiti and S. Premrudeepreechacharn, “Maximum Power Point Tracking Using Adaptive Fuzzy Logic Control for Grid-connected Photovoltaic System,”Proceedings of the IEEE Power Engineering Society Winter Meeting, Vol. 1, pp.372-377, 2002.
    [17]王俊雄,風力發電變流器與市電並聯系統之研製,中原大學,電機工程學系,碩士學位論文,民國93年7月。
    [18]德州儀器公司,http://www.ti.com.tw/。
    [19]D. H. Kim, D. W. Kang, Y. H. Lee, and D. S. Hyum, “The Analysis and Comparison of Carrier-Based PWM Method for 3-level Inverter,”IEEE Industrial Electronics Society, pp.1316-1321, Octorber 2000.
    [20]莊嘉琛,太陽能工程-太陽電池篇,全華圖書公司,1997。
    [21]吳財福、張健軒與陳裕愷,太陽能供電照照明系統綜論,全華圖書公司,1990。
    [22]王耀諄與洪愷威,“單晶矽太陽能光伏電池實測與EMTP建模之研究”,中華民國第23屆電力工程研討會,275-279頁,2002。
    [23]王耀諄,太陽能電池發電系統部分遮蔽故障之解析模型,95年度節約能源論文發表會,237-250頁,2006。
    [24]A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,”IEEE Transactions on Industrial Application, Vol. IA-17, No. 5, pp. 518-523, September/Octorber 1981.
    [25]F. Wang,“Sine-Triangle versus Space-Vector Modulation for Three-Level PWM Voltage-Source Inverter,”IEEE Transaction on Industry Applications, Vol. 38, No. 2, pp.500-506, March/April 2002.
    [26]賴炎生與張奕然,高功率變頻器,電機月刊,第九卷一期,120~126
    頁,1999年一月號。
    [27]T. Remus, B. Frede, J. K. Pedersen, E. Congelci, and P. N. Enjeti, “Multilevel Inverter by Cascading Industrial VSI,”IEEE Transactions on Industrial Electronics, Vol. 49, No. 4, pp.832-838, August 2002.
    [28]C. J. R. Caro, J. M. Ramirez, and P. M. G. Vite, “Novel DC-DC Multilevel Boost Converter,”Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, pp.2146-2151, June 2008.
    [29]G. Hua, Ching-Shan Leu, Y. Jiang, and F. C. Lee.“Novel Zero-Voltage-Transition PWM Converters, ”IEEE Transactions of Power Electronics , Vol. 9 , No 2 , pp.213-219, March 1994.
    [30]C. J. Tseng and C. L. Chen, “Novel ZVT-PWM Converters with Active Snubbers,” IEEE Transactions on Power Electronics, Vol. 13, No. 5, pp. 861-869, September 1998.
    [31]J. Selvaraj and N. A. Rahim,“Multilevel Inverter for Grid-Connected PV System Employing Digital PI Controller,”IEEE Transactions on Industrial Electronics, Vol. 56, No. 1, pp.149- 158, January 2009.
    [32]S. Daher, J. Schmid, and F. L. M. Antunes, “Multilevel Inverter Topologies for Stand-Alone PV Systems,” IEEE Transactions on Industrial Electronic, Vol. 55, No. 7, pp.2703-2712, July 2008.
    [33]王順忠,電力電子學,東華書局出版,民國87年。
    [34]梁適安,交換式電源供應器之理論與實務設計,全華圖書公司,民國83年8月。
    [35]N. Mohan, T. M. Undelano, and W. P. Robbius, “Power Electronics, ” John Wiley and Sons Inc.,1995.
    [36]P. A. Dahono, A. Purwadi and Qamaruzzaman,” An LC Filter Design
    Method for Single-Phase PWM Inverter,” Proceedings of the IEEE on Power Electronics and Drive Systems Conference,Vol. 2, pp.571 -576, 1995.
    [37]楊志祥,以80196MC微控制器為基礎之換流器研製,國立中正大學電機工程研究所,碩士學位論文,民國八十九年。
    [38]IGBT/Power MOSFET Gate Drive Photo-IC Couplers TLP250 (INV)/TLP250f (INV), TOSHIBA, 1999.
    [39]李奇俊、吳亞芬與沈金鐘,線性積體電路,高立圖書有限公司。
    [40]台灣安捷倫科技股份有限公司,http://www.agilent.com.tw/。
    [41]李政勳,小型太陽光電能能量轉換系統之研製,國立中山大學,電機工程研究所,碩士學位論文,民國91年。
    [42]E. Villanueva, P. Correa, J. Rodriguez, and Pacas,”Control of a Single-Phase Cascaded H-Bridge Multilevel Inverter for Grid-Connected Photovoltaic Systems,”IEEE Transactions on Industrial Electronics, Vol. 56, No. 11, pp.4399-4406, November 2009.
    [43]N. A. Rahim and J. Selvaraj, ”Multilevel Inverter with Dual Reference Modulation Technique for Grid Connected PV System,”Power Energy and Energy Society general Meeting, 2009. PESC 2009. IEEE, p.p 1-8, July 2009.
    [44]Y. Chen and K. M. Smedley, ”A Cost-Effective Single-Stage Inverter Maximum Power Point Tracking,”IEEE Transactions on Power Electronics, Vol. 19, No. 5, September 2004.

    下載圖示 校內:2015-08-26公開
    校外:2015-08-26公開
    QR CODE