| 研究生: |
林芷瑩 Lin, Zhi-Ying |
|---|---|
| 論文名稱: |
尾翅結構對蝴蝶滑翔動作之氣動力效應影響 Aerodynamic Effect of Hindwing Tail Structure on Butterfly Gliding Movement |
| 指導教授: |
葉思沂
Yeh, Szu-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 渦流 、蝴蝶尾翅 、壓力螢光感測塗料 、粒子影像測速 |
| 外文關鍵詞: | Wake Capture , PIV, PSP, Leading- Edge Vortex |
| 相關次數: | 點閱:56 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在低速風洞中探討蝴蝶仿生機構增加尾翅後之空氣動力學效應變化。現今微型飛行器之研究盛行,人們開始對真實飛行生物感到好奇,其中對於鳥類有較多之研究,然而相較於鳥類,昆蟲甚至蝴蝶之研究較少。因此本研究設計兩種不同形狀之蝴蝶翅膀模型,利用壓力敏感技術量測(Pressure Sensitive Paint, PSP)以及粒子影像測速(Particle Image Velocimetry, PIV)兩項技術在低速風洞中,了解其表面壓力分布及流場變化情形,觀察其在滑翔時之空氣動力學差異。
本研究設計一仿真實燕尾蝶擁有尾翅之翅膀模型其展弦比(AR)= 3.65,另設計一擁有相同翅膀形狀但無尾翅之翅膀模型其AR= 3.85,探討攻角(α)= 15°~ 35°時其兩者間空氣動力學效應之差異。本研究在PIV時沿著翼展方向主要探討兩個截面(z*=z/b= 0.12、0.4)之渦流、流場差異,而在PSP時除了探討全表面之壓力,還探討了(z*= 0.12、0.79)在這兩個截面之壓力係數沿著弦長( )方向分布之情況。
首先,從表面壓力結果發現,當增加尾翅時在靠近翼前緣之表面壓力相較於無尾翅之表面壓力來得低,顯示當增加尾翅時,可以維持翼前緣渦流之更穩定生成。且發現沿著翼展方向之壓力分布隨著靠近翼尖而壓力降低,表示本研究蝴蝶之翼面形狀產生之翼尖渦流可以減緩翼前緣渦流分離,使其靠近翼尖有較低之壓力分佈。而從PIV之結果顯示,增加尾翅可以減緩翼後緣渦流之形成,幫助翼前緣渦流更穩定之生成,且從尾流之速度分布可以明顯看到,當增加尾翅時在翼後緣之速度減弱之情況相較於有尾翅之模型來得低,表示增加尾翅可以減緩翼後緣阻力之產生。透過本研究之成果可以更了解蝴蝶之尾翅對於飛行之氣動力影響為何,此實驗結果對於未來微型飛行翼之設計提供參考。
In the present research, we perform a low-speed-wind-tunnel experiment to investigate the aerodynamic performance on a butterfly with and without hindwing tail. Recent years, Micro-air-vehicles (MAVs) that mimic the flight mechanisms of insects have attracted significant attention. Previous research has showed that in the absence of long hindwing tails, the lift and longitudinal static stability are reduced, indicating that the hindwing tails play an important role in enhancing the aerodynamic performance. However, in previous study, the experiments were all conducted at the same angle of attack. The aerodynamic effect of hindwing tail still needs to be studied systematically. To further understand the flight mechanism of butterflies which have relatively low aspect ratio, this research use pressure sensitive paint (PSP) and particle image velocimetry (PIV) to observe the pressure distribution on the upper surface and flow around the wing. Two testing models with/ without hindwing tail which made of aluminum plate with thickness of 0.9 mm were designed. One model with hindwing tail, which has the same shape of a swallowtail butterfly (Graphism policies) and the other just cut the hindwing tail with a round-shape modified.
In this study, the results show that leading-edge vortex is bigger and more stable in the butterfly model with hindwing tail. Secondly, the trailing edge vortex grows slowly in the spanwise direction with hindwing tail, which means the hindwing tail delay the generation of the trailing edge vortex. In addition, while the angle of attack was increased, the strength of trailing edge vortex is increased, and the location of the leading-edge vortex is far from the wing surface. At the angle of attack are 15˚and 25˚, the velocity shows a dramatically decreasing at the region near the trailing edge for the model without hindwing tail. On the basis, this research provides ideas for designing micro aerial vehicles about different shape of the wing for different mission. Under different flight condition, MAVs can improve the flight ability by increasing the hindwing tail.
1. Abas, M. F. B., Rafie, A. S. B. M., Yusoff, H. B., & Ahmad, K. A. B. (2016). Flapping wing micro-aerial-vehicle: kinematics, membranes, and flapping mechanisms of ornithopter and insect flight. Chinese Journal of Aeronautics, 29(5), 1159-1177.
2. Adrian, L., Adrian, R. J., & Westerweel, J. (2011). Particle image velocimetry. Cambridge university press.
3. Anyoji, M., Numata, D., Nagai, H., & Asai, K. (2015). Pressure-sensitive paint technique for surface pressure measurements in a low-density wind tunnel. Journal of Visualization, 18(2), 297-309.
4. Bhat, S., Zhao, J., Sheridan, J., Hourigan, K., & Thompson, M. (2019). Aspect ratio studies on insect wings. Physics of Fluids, 31(12), 121301.
5. Birnbaum, W. (1924). Das ebene Problem des schlagenden Flügels. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 4(4), 277-292.
6. Breuer, M., & Jovicic, N. (2001). Separated flow around a flat plate at high incidence: an LES investigation. Journal of Turbulence, 2(1), 018.
7. Corkery, S., Babinsky, H., & Harvey, J. (2018). On the development and early observations from a towing tank-based transverse wing–gust encounter test rig. Experiments in Fluids, 59(9), 1-16.
8. Egami, Y., Sato, Y., & Konishi, S. (2019). Development of Sprayable Pressure-Sensitive Paint with a Response Time of Less Than 10 μ s. AIAA journal, 57(5), 2198-2203.
9. Ellington, C. P. (1999). The novel aerodynamics of insect flight: applications to micro-air vehicles. Journal of experimental biology, 202(23), 3439-3448.
10. Fuchiwaki, M., Kuroki, T., Tanaka, K., & Tababa, T. (2013). Dynamic behavior of the vortex ring formed on a butterfly wing. Experiments in Fluids, 54(1), 1-12.
11. Gopalakrishnan, P., & Tafti, D. K. (2009). Effect of rotation kinematics and angle of attack on flapping flight. AIAA journal, 47(11), 2505-2519.
12. Gregory, J. (2004). Porous pressure-sensitive paint for measurement of unsteady pressures in turbomachinery. 42nd AIAA Aerospace Sciences Meeting and Exhibit,
13. Houghton, E. L., & Carpenter, P. W. (2003). Aerodynamics for engineering students. Elsevier.
14. Jakab, P. L. (1997). Otto Lilienthal:''The Greatest of the Precursors''. AIAA journal, 35(4), 601-607.
15. Jeong, J., Hussain, F., Schoppa, W., & Kim, J. (1997). Coherent structures near the wall in a turbulent channel flow. Journal of Fluid Mechanics, 332, 185-214.
16. Keane, R. D., & Adrian, R. J. (1992). Theory of cross-correlation analysis of PIV images. Applied scientific research, 49(3), 191-215.
17. Kinnas, S. A. (2020). VIScous vorticity equation (VISVE) for turbulent 2-D flows with variable density and viscosity. Journal of Marine Science and Engineering, 8(3), 191.
18. Kolář, V., & Šístek, J. (2015). Corotational and compressibility aspects leading to a modification of the vortex-identification Q-criterion. AIAA journal, 53(8), 2406-2410.
19. Konrath, R., Klein, C., Schröder, A., & Kompenhans, J. (2008). Combined application of pressure sensitive paint and particle image velocimetry to the flow above a delta wing. Experiments in Fluids, 44(3), 357-366.
20. Le Roy, C., Debat, V., & Llaurens, V. (2019). Adaptive evolution of butterfly wing shape: from morphology to behaviour. Biological Reviews, 94(4), 1261-1281.
21. Lee, B., Seong, J., Park, H., & Choi, H. (2014). Flow structures around a butterfly-shaped low-aspect-ratio wing. Journal of Mechanical Science and Technology, 28(7), 2669-2675.
22. Liu, H., & Aono, H. (2009). Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspiration & biomimetics, 4(1), 015002.
23. Muijres, F., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G., & Hedenström, A. (2008). Leading-edge vortex improves lift in slow-flying bats. Science, 319(5867), 1250-1253.
24. Ortega Ancel, A., Eastwood, R., Vogt, D., Ithier, C., Smith, M., Wood, R., & Kovač, M. (2017). Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots. Interface focus, 7(1), 20160087.
25. Park, H., Bae, K., Lee, B., Jeon, W.-P., & Choi, H. (2010). Aerodynamic performance of a gliding swallowtail butterfly wing model. Experimental mechanics, 50(9), 1313-1321.
26. Peng, D., Wang, S., & Liu, Y. (2016). Fast PSP measurements of wall-pressure fluctuation in low-speed flows: improvements using proper orthogonal decomposition. Experiments in Fluids, 57(4), 45.
27. Platzer, M. F., Jones, K. D., Young, J., & Lai, J. C. (2008). Flapping wing aerodynamics: progress and challenges. AIAA journal, 46(9), 2136-2149.
28. Polhamus, E. C. (1971). Predictions of vortex-lift characteristics by a leading-edge suctionanalogy. Journal of aircraft, 8(4), 193-199.
29. Quinn, M. K., Gongora-Orozco, N., Kontis, K., & Ireland, P. (2013). Application of pressure-sensitive paint to low-speed flow around a U-bend of strong curvature. Experimental thermal and fluid science, 48, 58-66.
30. Reay, D. A. (2014). The history of man-powered flight. Elsevier.
31. Ren, H., Wu, Y., & Huang, P. (2013). Visualization and characterization of near-wake flow fields of a flapping-wing micro air vehicle using PIV. Journal of Visualization, 16(1), 75-83.
32. Sakamura, Y., Suzuki, T., Matsumoto, M., Masuya, G., & Ikeda, Y. (2002). Optical measurements of high-frequency pressure fluctuations using a pressure-sensitive paint and Cassegrain optics. Measurement Science and Technology, 13(10), 1591.
33. Sane, S. P. (2003). The aerodynamics of insect flight. Journal of experimental biology, 206(23), 4191-4208.
34. Sane, S. P., & Dickinson, M. H. (2001). The control of flight force by a flapping wing: lift and drag production. Journal of experimental biology, 204(15), 2607-2626.
35. Sears, W. R. (2003). Some aspects of non-stationary airfoil theory and its practical application. AIAA journal, 41(7), 17-21.
36. Sellers, M. (1998). Pressure Sensitive Paint Data on the Transonic Technology Wing Demonstrator (TST) in the AEDC Propulsion Wind Tunnel 16T.
37. Shephard, R. J. (2018). The Growing Knowledge of Anatomy and Physiology Through to the Enlightenment. In A History of Health & Fitness: Implications for Policy Today (pp. 425-452). Springer.
38. Shyy, W., Aono, H., Kang, C.-k., & Liu, H. (2013). An introduction to flapping wing aerodynamics (Vol. 37). Cambridge University Press.
39. Sogukpinar, H., & Bozkurt, I. (2015). Calculation of Optimum Angle of Attack to Determine Maximum Lift to Drag Ratio of NACA 632-215 Airfoil. Journal of Multidisciplinary Engineering Science and Technology, 2, 1103-1108.
40. Sohn, M. H., & Chang, J. W. (2012). Visualization and PIV study of wing-tip vortices for three different tip configurations. Aerospace Science and Technology, 16(1), 40-46.
41. Sugioka, Y., Hiura, K., Chen, L., Matsui, A., Morita, K., Nonomura, T., & Asai, K. (2019). Unsteady pressure-sensitive-paint (PSP) measurement in low-speed flow: characteristic mode decomposition and noise floor analysis. Experiments in Fluids, 60(7), 1-17.
42. Talay, T. A. (1975). Introduction to the Aerodynamics of Flight (Vol. 367). Scientific and Technical Information Office, National Aeronautics and Space ….
43. Theunissen, R., Scarano, F., & Riethmuller, M. L. (2006). An adaptive sampling and windowing interrogation method in PIV. Measurement Science and Technology, 18(1), 275.
44. Thielicke, W., & Stamhuis, E. (2014). PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of open research software, 2(1).
45. Tsuyuki, K., Sudo, S., & Tani, J. (2006). Morphology of insect wings and airflow produced by flapping insects. Journal of intelligent material systems and structures, 17(8-9), 743-751.
46. Van Den Berg, C., & Ellington, C. P. (1997). The three–dimensional leading–edge vortex of a ‘hovering’model hawkmoth. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1351), 329-340.
47. Van Den Berg, C., & Ellington, C. P. (1997). The vortex wake of a ‘hovering’model hawkmoth. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1351), 317-328.
48. Willert, C. E., & Gharib, M. (1991). Digital particle image velocimetry. Experiments in Fluids, 10(4), 181-193.
49. Yamashita, T., Sugiura, H., Nagai, H., Asai, K., & Ishida, K. (2007). Pressure-sensitive paint measurement of the flow around a simplified car model. Journal of Visualization, 10(3), 289-298.
50. 王健宇. (2019). 利用螢光壓力感測技術之影像處理與溫度修正量測機翼於低速風洞中之表面壓力分布.
51. 蘇威仲. (2020). 以仿生拍撲機構探討雀類前飛運動中肩-腕關節距離之氣動力效應.