簡易檢索 / 詳目顯示

研究生: 陳立偉
Benedict Andrew Dhian
論文名稱: 應用遙測技術分析台南七股沙洲海岸線變化及泥沙運移
Temporal Analysis Of Shoreline Changes and Sediment Transport Using Remote Sensing Method Along Cigu Sandbar in Tainan, Taiwan
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 86
外文關鍵詞: Shoreline Changes, Sediment Transport, Remote Sensing, Hydrodynamic Model
相關次數: 點閱:86下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Natural coastal barriers, such as sandbars, provide protection against storm surges and flooding exacerbated by sea-level rise and climate change. Cigu sandbar, located on the southwestern coast of Taiwan, faces steady erosion problems due to global warming, extreme natural events, and unnatural events. A continuation of this may lead to habitat loss, job loss, and jeopardized ecosystem. A clear understanding of shoreline changes and sediment transport is helpful when trying to understand the reasons for coastal erosion. This study attempted to construct a visual and numerical representation of shoreline changes and sediment transport along a sandbar in the Cigu lagoon by combining the technology of remote sensing with the hydrodynamic model. Various datasets over different temporal scales were synthesized in an attempt to make a chronological series easy to understand. The results show that from 1986 to 2021, the shoreline changes indicate high erosion, especially on the north side of the Wangzailiao sandbar, with a maximum rate of -29.3 m/year (EPR) and -33.7 m/year (LRR). Results have indicated that in this particular case, the erosion in the Cigu sandbar has been caused by a series of typhoons and the coastal management decisions over the last century. In addition, The analysis of sediment transport revealed that in the winter season, the amount of sand transported is much higher than in the summer season, resulting in a high erosion along the sandbar and siltation inside the lagoon. Now the erosion indicates a stable state with an average of 6 m/year, but most geologists predicted that the sandbar would reach the land and the lagoon would disappear. In order to control the erosion into the stable state, sustainable solutions and adaptation strategies need to be taken into account with regard to the management of the Cigu sandbar.

    Abstract I Acknowledgements II Table of Contents III List of Tables VI List of Figures VII Chapter 1. Introduction 1 1.1 Issues Facing Cigu sandbar 2 1.2 Motivation and Purpose 4 Chapter 2. Literature Review 6 2.1 Sandbar and Lagoon: Part of Coastal Systems 6 2.1.1 Sandbar and Lagoon Definition 6 2.1.2 Sandbar Erosion and Lagoon Siltation 6 2.1.3 Case study of Sandbar Erosion and Lagoon Siltation 7 2.2 Shoreline Definition and Indicators 8 2.3 Basic Concept of Sediment Transport 10 2.3.1 Cross-shore Sediment Transport 11 2.3.2 Longshore Sediment Transport 12 2.4 Drivers of Shoreline Change 12 2.5 Application of Remote Sensing in Coastal Management 13 2.5.1 Digital Shoreline Analysis System (DSAS) 13 2.5.2 Satellite Derived Suspended Sediment Concentration 14 Chapter 3. Methods 16 3.1 Introduction 17 3.2 Research Scopes 18 3.2.1 Study Area 18 3.2.2 Timeline 20 3.3 Data Collections 20 3.3.1 Satellite Imagery 21 3.3.2 Sediment and Oceanographic Data 21 3.4 Shoreline Analysis using DSAS 22 3.4.1 Normalized Difference Water Index 23 3.4.2 Linear Regression Rate and End Point Rate 24 3.5 Sediment Transport Analysis 26 3.5.1 Suspended Sediment Concentration 27 3.5.2 Hydrodynamic model 28 3.5.3 Mud transport (cohesive) 29 3.5.4 Sand Transport (Non-cohesive) 29 3.5.5 Model Validation and Statistic Error Analysis 31 3.5.6 Model Configuration 32 3.5.6 Initial Condition of Mud Transport 34 3.6 Synthetic Approach 36 Chapter 4. Results 37 4.1 Current State of Cigu Sandbar 37 4.2 Shoreline Changes of Cigu Sandbar 38 4.3 Model Validation 47 4.3.1 Validation of Suspended Sediment Concentration 47 4.3.2 Validation of Hydrodynamic Model 48 4.4 Suspended Sediment Distribution along Cigu Coast 51 4.5 The Seasonal Variations of Wave and Flow Field 54 4.6 Sediment Transport 59 4.6.1 Mud Transport (Cohesive) 59 4.6.2 Sand Transport (Non-cohesive) 63 Chapter 5. Discussions 65 5.1 History Evolution of Cigu Sandbar and Lagoon 65 5.2 Main Drivers of the Evolution in Cigu Sandbar 66 5.2.1 Nature Causes of Coastal Erosion 66 5.2.2 Human Causes of Coastal Erosion 67 5.3 Coastal Protection and Management in Taiwan 69 5.4 Lesson Learned for Future Management Plans 71 Chapter 6. Conclusions and Suggestions 73 6.1 Conclusions 73 6.2 Suggestions 74 Bibliography 75 Appendix 80 Appendix 1. Yearly EPR (m/year) methods from 1986 to 2021 80

    Boak, E. H., & Turner, I. L. (2005). Shoreline definition and detection: A review. Journal of Coastal Research, 21(4), 688–703. https://doi.org/10.2112/03-0071.1
    Cambers, G. (2009). Caribbean beach changes and climate change adaptation. Aquatic Ecosystem Health and Management, 12(2), 168–176. https://doi.org/10.1080/14634980902907987
    Campmas, L., Sabatier, F., Meulé, S., Liou, J.-Y., Petitjean, L., Boudin, F., le Roux-Mallouf, R., Sous, D., & Bouchette, F. (2014). Multi-scale morphodynamics of sand barrier driven by Monsoon/typhoon conditions. In Paralia (Vol. 7). https://doi.org/10.5150/jngcgc.2014.030
    Chang, Y., Chu, K. wai, & Chuang, L. Z. H. (2018). Sustainable coastal zone planning based on historical coastline changes: A model from case study in Tainan, Taiwan. Landscape and Urban Planning, 174, 24–32. https://doi.org/10.1016/j.landurbplan.2018.02.012
    Costa Santos, C. S. da, Dias, F. F., Franz, B., Alves dos Santos, P. R., Fonseca Rodrigues, T. da, Vargas, R., & Américo dos Santos, C. (2019). RELATIVE SEA LEVEL RISE EFFECTS AT THE MARAMBAIA BARRIER ISLAND AND GUARATIBA MANGROVE: SEPETIBA BAY (SE BRAZIL). Journal of Sedimentary Environments, 4(3), 249–262. https://doi.org/10.12957/jse.2019.44397
    Daniel, E. B., & Abkowitz, M. D. (2005). Improving the design and implementation of beach setbacks in Caribbean Small Islands. 17, 53–65.
    Dewi, R., Zainuri, M., Anggoro, S., & Winanto, T. (2017). Analisis Perubahan Lahan Kawasan Laguna Segara Anakan Selama Periode Waktu (1978-2016) Menggunakan Satelit Landsat Multitemporal. Omni-Akuatika, 12(3). https://doi.org/http://dx.doi.org/10.20884/1.oa.2016.12.3.209
    Fredsøe, J. (1992). MECHANICS OF COASTAI, SEDIMENT TRANSPORT (Vol. 3). https://doi.org/https://doi.org/10.1142/1546
    Gao, B. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/https://doi.org/10.1016/S0034-4257(96)00067-3
    Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., Farris, A. S., & Survey, U. S. G. (2018). Digital Shoreline Analysis System (DSAS) version 5.0 user guide. In Open-File Report. https://doi.org/10.3133/ofr20181179
    Hoeke, R. K., Zarillo, G. A., & Synder, M. (2001). A GIS Based Tool for Extracting Shoreline Positions from Aerial Imagery (BeachTools).
    Hsu, T. W., Lin, T. Y., & Tseng, I. F. (2007). Human impact on coastal erosion in Taiwan. Journal of Coastal Research, 23(4), 961–973. https://doi.org/10.2112/04-0353R.1
    Huang, W.-P. (2017). Modelling the Effects of Typhoons on Morphological Changes in the Estuary of Beinan, Taiwan. Continental Shelf Research, 135. https://doi.org/10.1016/j.csr.2017.01.011
    Kjerfve, B. (1994). Coastal Lagoons. Elsevier Oceanography Series, 60(C), 1–8. https://doi.org/10.1016/S0422-9894(08)70006-0
    Kondolf, G. M. (1997). PROFILE Hungry Water: Effects of Dams and Gravel Mining on River Channels. www.ced.berkeley.edu/,kondolf/
    Li, X., Zhou, Y., Zhang, L., & Kuang, R. (2014). Shoreline change of Chongming Dongtan and response to river sediment load: A remote sensing assessment. Journal of Hydrology, 511, 432–442. https://doi.org/https://doi.org/10.1016/j.jhydrol.2014.02.013
    Li, Y., Xu, X., & Zheng, B. (2018). Satellite views of cross-strait sediment transport in the Taiwan Strait driven by Typhoon Morakot (2009). Continental Shelf Research, 166, 54–64. https://doi.org/10.1016/j.csr.2018.07.004
    Martin, L., & Dominguez, J. (1994). Geological History of Coastal Lagoons. Elsevier Oceanography Series, 60, 41–68. https://doi.org/https://doi.org/10.1016/S0422-9894(08)70008-4
    Mccurdy, P. G. (1950). Coastal Delination from Aerial Photographs. Photogrammetric Engineering, 550–555.
    Moore, L. J. (2000). Shoreline Mapping Techniques. Source: Journal of Coastal Research, 16(1), 111–124.
    Nechad, B., Ruddick, K. G., & Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4), 854–866. https://doi.org/https://doi.org/10.1016/j.rse.2009.11.022
    Nichols, M. M., & Boon, J. D. (1994). Sediment Transport Processes in Coastal Lagoons. Elsevier Oceanography Series, 60, 157–219. https://doi.org/http://dx.doi.org/10.1016/s0422-9894(08)70012-6
    Pao, C.-H., Chen, J.-L., Su, S.-F., Huang, Y.-C., Huang, W.-H., & Kuo, C.-H. (2021). The Effect of Wave-Induced Current and Coastal Structure on Sediment Transport at the Zengwen River Mouth. Journal of Marine Science and Engineering, 9(3). https://doi.org/10.3390/jmse9030333
    Petti, M., Bosa, S., & Pascolo, S. (2018). Lagoon Sediment Dynamics: A Coupled Model to Study a Medium-Term Silting of Tidal Channels. Water, 10(5). https://doi.org/10.3390/w10050569
    Plant, N. G., & Holman, R. A. (1997). Intertidal beach profile estimation using video images. Marine Geology, 140(1), 1–24. https://doi.org/https://doi.org/10.1016/S0025-3227(97)00019-4
    Priest, G. R. (1999). Coastal Shoreline Change Study Northern and Central Lincoln County, Oregon. In Journal of Coastal Research SI (Vol. 28). https://about.jstor.org/terms
    Shalowitz, A. L., & Karo, H. A. (1964). Shore and Sea Boundaries: With Special Reference to the Interpretation and Use of Coast and Geodetic Survey Data (Issue v. 2;v. 10). U.S. Department of Commerce. https://books.google.com.tw/books?id=ntXdBCoXKmIC
    Shrestha, P. L., & Blumberg, A. F. (2005). Cohesive Sediment Transport. In M. L. Schwartz (Ed.), Encyclopedia of Coastal Science (pp. 327–330). Springer Netherlands. https://doi.org/10.1007/1-4020-3880-1_95
    Soulsby, Richard. (1997). Dynamics of marine sands : a manual for practical applications. Thomas Telford.
    Stockdonf, H. F., Jr., A. H. S., List, J. H., & Holman, R. A. (2002). Estimation of Shoreline Position and Change Using Airborne Topographic Lidar Data. Journal of Coastal Research, 18(3), 502–513. http://www.jstor.org/stable/4299097
    Suzuki, M. S., Figueiredo, R. O., Castro, S. C., Silva, C. E., Pereira, E. A., Silva, J. A., & Aragon, G. T. (2002). Sand bar opening in a coastal Lagoon (Iquipari) in the northern region of Rio de Janeiro state: Hydrological and hydrochemical changes. Brazilian Journal of Biology, 62(1), 51–62. https://doi.org/10.1590/S1519-69842002000100007
    Toure, S., Diop, O., Kpalma, K., & Maiga, A. S. (2019). Shoreline detection using optical remote sensing: A review. ISPRS International Journal of Geo-Information, 8(2). https://doi.org/10.3390/ijgi8020075
    Vanhellemont, Q., & Ruddick, K. (2018). Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sensing of Environment, 216, 586–597. https://doi.org/https://doi.org/10.1016/j.rse.2018.07.015
    Wang, H. W., Kondolf, M., Tullos, D., & Kuo, W. C. (2018). Sediment management in Taiwan’s reservoirs and barriers to implementation. Water (Switzerland), 10(8). https://doi.org/10.3390/w10081034
    Water Resource Agency. (2013). 台南海岸侵蝕原因及防護設施改善對策研究 (八掌溪口至曾文溪口).
    Zhang, K., Huang, W., Douglas, B. C., & Leatherman, S. (2002). Shoreline position variability and long-term trend analysis. Shore and Beach, 70, 31–35.

    下載圖示 校內:2023-12-01公開
    校外:2023-12-01公開
    QR CODE