| 研究生: |
陳立偉 Benedict Andrew Dhian |
|---|---|
| 論文名稱: |
應用遙測技術分析台南七股沙洲海岸線變化及泥沙運移 Temporal Analysis Of Shoreline Changes and Sediment Transport Using Remote Sensing Method Along Cigu Sandbar in Tainan, Taiwan |
| 指導教授: |
王筱雯
Wang, Hsiao-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 外文關鍵詞: | Shoreline Changes, Sediment Transport, Remote Sensing, Hydrodynamic Model |
| 相關次數: | 點閱:86 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Natural coastal barriers, such as sandbars, provide protection against storm surges and flooding exacerbated by sea-level rise and climate change. Cigu sandbar, located on the southwestern coast of Taiwan, faces steady erosion problems due to global warming, extreme natural events, and unnatural events. A continuation of this may lead to habitat loss, job loss, and jeopardized ecosystem. A clear understanding of shoreline changes and sediment transport is helpful when trying to understand the reasons for coastal erosion. This study attempted to construct a visual and numerical representation of shoreline changes and sediment transport along a sandbar in the Cigu lagoon by combining the technology of remote sensing with the hydrodynamic model. Various datasets over different temporal scales were synthesized in an attempt to make a chronological series easy to understand. The results show that from 1986 to 2021, the shoreline changes indicate high erosion, especially on the north side of the Wangzailiao sandbar, with a maximum rate of -29.3 m/year (EPR) and -33.7 m/year (LRR). Results have indicated that in this particular case, the erosion in the Cigu sandbar has been caused by a series of typhoons and the coastal management decisions over the last century. In addition, The analysis of sediment transport revealed that in the winter season, the amount of sand transported is much higher than in the summer season, resulting in a high erosion along the sandbar and siltation inside the lagoon. Now the erosion indicates a stable state with an average of 6 m/year, but most geologists predicted that the sandbar would reach the land and the lagoon would disappear. In order to control the erosion into the stable state, sustainable solutions and adaptation strategies need to be taken into account with regard to the management of the Cigu sandbar.
Boak, E. H., & Turner, I. L. (2005). Shoreline definition and detection: A review. Journal of Coastal Research, 21(4), 688–703. https://doi.org/10.2112/03-0071.1
Cambers, G. (2009). Caribbean beach changes and climate change adaptation. Aquatic Ecosystem Health and Management, 12(2), 168–176. https://doi.org/10.1080/14634980902907987
Campmas, L., Sabatier, F., Meulé, S., Liou, J.-Y., Petitjean, L., Boudin, F., le Roux-Mallouf, R., Sous, D., & Bouchette, F. (2014). Multi-scale morphodynamics of sand barrier driven by Monsoon/typhoon conditions. In Paralia (Vol. 7). https://doi.org/10.5150/jngcgc.2014.030
Chang, Y., Chu, K. wai, & Chuang, L. Z. H. (2018). Sustainable coastal zone planning based on historical coastline changes: A model from case study in Tainan, Taiwan. Landscape and Urban Planning, 174, 24–32. https://doi.org/10.1016/j.landurbplan.2018.02.012
Costa Santos, C. S. da, Dias, F. F., Franz, B., Alves dos Santos, P. R., Fonseca Rodrigues, T. da, Vargas, R., & Américo dos Santos, C. (2019). RELATIVE SEA LEVEL RISE EFFECTS AT THE MARAMBAIA BARRIER ISLAND AND GUARATIBA MANGROVE: SEPETIBA BAY (SE BRAZIL). Journal of Sedimentary Environments, 4(3), 249–262. https://doi.org/10.12957/jse.2019.44397
Daniel, E. B., & Abkowitz, M. D. (2005). Improving the design and implementation of beach setbacks in Caribbean Small Islands. 17, 53–65.
Dewi, R., Zainuri, M., Anggoro, S., & Winanto, T. (2017). Analisis Perubahan Lahan Kawasan Laguna Segara Anakan Selama Periode Waktu (1978-2016) Menggunakan Satelit Landsat Multitemporal. Omni-Akuatika, 12(3). https://doi.org/http://dx.doi.org/10.20884/1.oa.2016.12.3.209
Fredsøe, J. (1992). MECHANICS OF COASTAI, SEDIMENT TRANSPORT (Vol. 3). https://doi.org/https://doi.org/10.1142/1546
Gao, B. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/https://doi.org/10.1016/S0034-4257(96)00067-3
Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., Farris, A. S., & Survey, U. S. G. (2018). Digital Shoreline Analysis System (DSAS) version 5.0 user guide. In Open-File Report. https://doi.org/10.3133/ofr20181179
Hoeke, R. K., Zarillo, G. A., & Synder, M. (2001). A GIS Based Tool for Extracting Shoreline Positions from Aerial Imagery (BeachTools).
Hsu, T. W., Lin, T. Y., & Tseng, I. F. (2007). Human impact on coastal erosion in Taiwan. Journal of Coastal Research, 23(4), 961–973. https://doi.org/10.2112/04-0353R.1
Huang, W.-P. (2017). Modelling the Effects of Typhoons on Morphological Changes in the Estuary of Beinan, Taiwan. Continental Shelf Research, 135. https://doi.org/10.1016/j.csr.2017.01.011
Kjerfve, B. (1994). Coastal Lagoons. Elsevier Oceanography Series, 60(C), 1–8. https://doi.org/10.1016/S0422-9894(08)70006-0
Kondolf, G. M. (1997). PROFILE Hungry Water: Effects of Dams and Gravel Mining on River Channels. www.ced.berkeley.edu/,kondolf/
Li, X., Zhou, Y., Zhang, L., & Kuang, R. (2014). Shoreline change of Chongming Dongtan and response to river sediment load: A remote sensing assessment. Journal of Hydrology, 511, 432–442. https://doi.org/https://doi.org/10.1016/j.jhydrol.2014.02.013
Li, Y., Xu, X., & Zheng, B. (2018). Satellite views of cross-strait sediment transport in the Taiwan Strait driven by Typhoon Morakot (2009). Continental Shelf Research, 166, 54–64. https://doi.org/10.1016/j.csr.2018.07.004
Martin, L., & Dominguez, J. (1994). Geological History of Coastal Lagoons. Elsevier Oceanography Series, 60, 41–68. https://doi.org/https://doi.org/10.1016/S0422-9894(08)70008-4
Mccurdy, P. G. (1950). Coastal Delination from Aerial Photographs. Photogrammetric Engineering, 550–555.
Moore, L. J. (2000). Shoreline Mapping Techniques. Source: Journal of Coastal Research, 16(1), 111–124.
Nechad, B., Ruddick, K. G., & Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4), 854–866. https://doi.org/https://doi.org/10.1016/j.rse.2009.11.022
Nichols, M. M., & Boon, J. D. (1994). Sediment Transport Processes in Coastal Lagoons. Elsevier Oceanography Series, 60, 157–219. https://doi.org/http://dx.doi.org/10.1016/s0422-9894(08)70012-6
Pao, C.-H., Chen, J.-L., Su, S.-F., Huang, Y.-C., Huang, W.-H., & Kuo, C.-H. (2021). The Effect of Wave-Induced Current and Coastal Structure on Sediment Transport at the Zengwen River Mouth. Journal of Marine Science and Engineering, 9(3). https://doi.org/10.3390/jmse9030333
Petti, M., Bosa, S., & Pascolo, S. (2018). Lagoon Sediment Dynamics: A Coupled Model to Study a Medium-Term Silting of Tidal Channels. Water, 10(5). https://doi.org/10.3390/w10050569
Plant, N. G., & Holman, R. A. (1997). Intertidal beach profile estimation using video images. Marine Geology, 140(1), 1–24. https://doi.org/https://doi.org/10.1016/S0025-3227(97)00019-4
Priest, G. R. (1999). Coastal Shoreline Change Study Northern and Central Lincoln County, Oregon. In Journal of Coastal Research SI (Vol. 28). https://about.jstor.org/terms
Shalowitz, A. L., & Karo, H. A. (1964). Shore and Sea Boundaries: With Special Reference to the Interpretation and Use of Coast and Geodetic Survey Data (Issue v. 2;v. 10). U.S. Department of Commerce. https://books.google.com.tw/books?id=ntXdBCoXKmIC
Shrestha, P. L., & Blumberg, A. F. (2005). Cohesive Sediment Transport. In M. L. Schwartz (Ed.), Encyclopedia of Coastal Science (pp. 327–330). Springer Netherlands. https://doi.org/10.1007/1-4020-3880-1_95
Soulsby, Richard. (1997). Dynamics of marine sands : a manual for practical applications. Thomas Telford.
Stockdonf, H. F., Jr., A. H. S., List, J. H., & Holman, R. A. (2002). Estimation of Shoreline Position and Change Using Airborne Topographic Lidar Data. Journal of Coastal Research, 18(3), 502–513. http://www.jstor.org/stable/4299097
Suzuki, M. S., Figueiredo, R. O., Castro, S. C., Silva, C. E., Pereira, E. A., Silva, J. A., & Aragon, G. T. (2002). Sand bar opening in a coastal Lagoon (Iquipari) in the northern region of Rio de Janeiro state: Hydrological and hydrochemical changes. Brazilian Journal of Biology, 62(1), 51–62. https://doi.org/10.1590/S1519-69842002000100007
Toure, S., Diop, O., Kpalma, K., & Maiga, A. S. (2019). Shoreline detection using optical remote sensing: A review. ISPRS International Journal of Geo-Information, 8(2). https://doi.org/10.3390/ijgi8020075
Vanhellemont, Q., & Ruddick, K. (2018). Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sensing of Environment, 216, 586–597. https://doi.org/https://doi.org/10.1016/j.rse.2018.07.015
Wang, H. W., Kondolf, M., Tullos, D., & Kuo, W. C. (2018). Sediment management in Taiwan’s reservoirs and barriers to implementation. Water (Switzerland), 10(8). https://doi.org/10.3390/w10081034
Water Resource Agency. (2013). 台南海岸侵蝕原因及防護設施改善對策研究 (八掌溪口至曾文溪口).
Zhang, K., Huang, W., Douglas, B. C., & Leatherman, S. (2002). Shoreline position variability and long-term trend analysis. Shore and Beach, 70, 31–35.