簡易檢索 / 詳目顯示

研究生: 姚書農
Yao, Shu-Nung
論文名稱: 低成本之修正型離散餘弦轉換架構設計
A Low-Cost Modified Discrete Cosine Transform Architecture for MPEG AAC
指導教授: 雷曉方
Lei, Sheau-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 61
中文關鍵詞: 修正型離散餘弦轉換馬克勞林級數
外文關鍵詞: Maclaurin series, MDCT
相關次數: 點閱:55下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一個基於馬克勞林級數的低成本修正型離散餘弦轉換電路架構。大多數的音訊編碼標準中,使用修正型離散餘弦轉換作為把音訊從時域轉換至頻域的工具,在修正型離散餘弦轉換中使用到大量的三角函數係數,而一般的電路架構使用查表方式來趨近於三角函數,但是查表的方法在MPEG AAC裡將會造成面積過大以及設計不夠彈性的缺點。因此我們在此採用馬克勞林級數來實現一個特殊電路模組用以計算三角函數,而且同時運用了三角函數的對稱性與週期性來降低電路的複雜度。結果證實我們所設計的架構跟其他架構相比可以大大節省晶片面積。
    這個電路是用台灣積體電路製造股份有限公司所提供的0.18μm互補式金氧半製程來進行合成,它的整體面積大約為6040個邏輯閘數,並且最大可以操作在58.8 MHz的時脈頻率,所以此設計適合應用於低成本的多媒體系統。

    Most of current audio coding standards use the modified discrete cosine transform (MDCT) to transform an audio sequence from time domain to frequency domain. This thesis presents a low-cost MDCT architecture based on Maclaurin series. Most architectures used lookup table to approach trigonometric function, but the lookup table in MPEG AAC will cause the design large and inflexible. Therefore, we adopt Maclaurin series to design the computation circuit and apply the symmetry and periodic identities of trigonometric function to reduce the circuit complexity. It results that our proposed architecture can be implemented with less area than other MDCT architectures.
    0.18 μm TSMC cell library technology is used to synthesize the architecture. The proposed architecture takes about 6040 gates with maximum operation frequency of 58.8 MHz. Therefore, it is suitable for low-cost multimedia applications.

    摘要 i ABSTRACT ii 誌謝 iii OUTLINE iv LIST OF TABLES vi LIST OF FIGURES vii CHAPTER 1 - INTRODUCTION 1 1.1. Motivation 1 1.2. Literature Survey & Compared 3 1.3. Organized 4 CHAPTER 2 – MPEG DIGITAL AUDIO CODING 5 2.1. Introduction of MPEG Digital Audio Coding 5 2.1.1. Auditory Masking and Perceptual Coding 6 2.1.2. Frequency-Domain Coding 7 2.1.3. Window Switching 8 2.1.4. Dynamic Bit Allocation 10 2.2. MPEG-2/4 Advanced Audio Coding 11 2.2.1. MPEG-2 Advanced Audio Coding (AAC) 12 2.2.2. The MPEG-4 Audio Standard 14 CHAPTER 3 – REVIEW OF MDCT ARCHITECTURE 19 3.1. Overview of MDCT 19 3.2. Review of MDCT Architecture 21 3.2.1. Chiang's Architecture 21 3.2.2. Nikolajevic’s Achitecture 25 3.2.3. Cheng’s Architecture 30 3.2.4. Duhamel’s Architecture 36 CHAPTER 4 – THE PROPOSED MDCT ARCHITECTURE 38 4.1. The Proposed Algorithm 38 4.1.1. Taylor and Maclaurin Polynomials 38 4.1.2. Determining the Accuracy of an Approximation 39 4.1.3. The Proposed Algorithm 40 4.2. System Description 41 4.2.1. Angle Function Block 42 4.2.2. Cosine Function Block 44 4.2.3. System Integration 45 CHAPTER 5 – IMPLEMENTATION AND VERIFICATION RESULTS 46 5.1. Real Time Estimation 46 5.2. Implementation Results 47 5.3. Verification Results 50 CHAPTER 6 – CONCLUSIONS AND FUTURE WORKS 57 REFERENCE 58

    [1] D. Pan, “MPEG Digital Audio Coding,” IEEE Signal Processing Magazine, Sept. 1997.
    [2] Hwang-Cheng Chiang and Jie-Cherng Liu, “Regressive implementations for the forward and inverse MDCT in MPEG audio coding,” IEEE Signal Processing Lett., Vol. 3, pp. 116–118, April 1996.
    [3] Nikolajevic, V. and Fettweis, G., “New recursive algorithms for the forward and inverse MDCT,” in Proc. IEEE Signal Processing Systems, pp. 51–57, Sept. 2001.
    [4] Mu-Huo Cheng and Yu-Hsin Hsu, “Fast IMDCT and MDCT algorithms - a matrix approach,” IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. 51, pp. 221–229, Jan. 2003.
    [5] Nikolajevic, V. and Fettweis, G., “Improved implementation of MDCT in MP3 audio coding,” in Proc. IEEE International Symposium on Multi-Dimensional Mobile Communications, Vol. 1, pp.309–312, 29 Aug.-1 Sept. 2004.
    [6] J. Herre, B. Grill, “Overview of MPEG-4 audio and its applications in mobile communications,” in Proc. WCCC-ICSP, vol. 1, pp. 11-20, Aug. 2000.
    [7] ISO/IEC, Final Draft International Standard 14496-3: MPEG-4 Audio, ISO/IEC JTC1/SC29/WG11 N2503, Oct. 1998.
    [8] H. Purnhagen, "An Overview of MPEG-4 Audio Version 2," AES 17th International Conference on High-Quality Audio Coding, Firenze, Sept. 1999.
    [9] K. Brandenburg and M. Bosi, “Overview of MPEG Audio: Current and Future Standards for Low Bit Rate Audio Coding,” Audio Eng. Soc., Vol. 45, No. 1/2, pp. 4–21, Jan./Feb. 1997.
    [10] B. Grill, “The MPEG-4 General Audio Coder,” in Proc. AES 17th International Conference, Sep. 1999.
    [11] J. Herre, E. Allamanche, R. Geiger, and T. Sporer, “Proposal For a Low Delay MPEG-4 Audio Coder Based on AAC,” ISO/IEC JTC1/SC29/WG11, M4139, Oct. 1998.
    [12] J. Herre, E. Allamanche, R. Geiger, and T. Sporer, “Information & Proposed Enhancements for MPEG-4 Low Delay Audio Coding,” ISO/IEC JTC1/SC29/WG11, M4560, Mar. 1999.
    [13] WIKIPEDIA, http://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
    [14] V. Britanak and K. R Rao, "An Efficient Implementation of the Forward and Inverse MDCT in MPEG Audio Coding," IEEE Signal Processing Lett.,, vol. 8, pp. 48-51, Feb. 2001.
    [15] Larson, Hostetler and Edwards, Calculus, Houghton Mifflin College, New York, 1998.
    [16] Duhamel, P., Mahieux, Y. and Petit, J.P., “A fast algorithm for the implementation of filter banks based on `time domain aliasing cancellation'”, in Proc. ICASSP, Vol. 3, pp. 2209 – 2212, Apr. 1991.
    [17] J.E. Volder, “The CORDIC trigonometric computing technique,” IRE Trans. Electronics Computers, Vol. EC-8, No. 3, pp.330-4, 1959.
    [18] T.H. Tsai and J.N. Liu, “Architecture design for MPEG-2 AAC filterbank decoder using modified regressive method,” in Proc. ICASSP, Vol. 3, pp. III-3216 - III-3219, May, 2002.
    [19] Simlastik, M., Malik, P., Pikula, T. and Balaz, M., “FPGA Implementation of a Fast MDCT Algorithm,” in Proc. Design and Diagnostics of Electronic Circuits and systems, pp. 226 – 227, Apr. 2006.
    [20] Tsung-Han Tsai, Jia-Her Luo, Shih-Way Huang and Sung-Che Li, “Low complexity architecture design of MDCT-based psychoacoustic model for MPEG 2/4 AAC encoder,” in Proc. ISCAS, May, 2006.
    [21] J. Princen and A. Bradley, “Analysis/Synthesis Filterbank Design Based on Time Domain Aliasing Cancellation,” IEEE Trans. on Acoust. Speech, and Signal Process. Vol. ASSP-34, pp.1153-1161, 1986.
    [22] 陳奇宏,“應用於正逆改良型離散餘弦轉換之高效率遞迴架構”,碩士論文,成功大學,民88。

    下載圖示 校內:2010-07-11公開
    校外:2010-07-11公開
    QR CODE